Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal.
Technologies Associated with Clinical Management of Tumors
Some of the thermal ablation technologies, such as radiofrequency ablation (RFA) and microwave ablation (MWA), have been popularly used for the clinical management of tumors. Compared to conventional therapies, thermal ablation therapies involve minimal invasion, shorter duration of hospitalization, lower mortality rate and reduced cost of therapy.
Over the years, MWA has become an alternative method to RFA, because of its higher heating efficiency, deep penetration and, large ablation area. MWA is based on hyperthermia, i.e., above 60℃, which can cause denaturation of protein and, thereby, cause irreversible cellular injury. Importantly, researchers observed that MWA therapy was effective against primary or metastatic tumors associated with lung cancer, liver cancer and breast cancer.
Two of the key limitations of MWA therapy include uneven distribution of heat and quick diffusion; these lead to damaging both malignant as well as surrounding healthy tissues. To overcome this drawback, scientists have developed various microwave sensitizers that can transform microwave electromagnetic energy into thermal energy and accumulate maximum heat at the target site.
Chemodynamic therapy (CDT) is an emerging anticancer therapy based on a Fenton/Fenton-like reaction that produces highly oxidative hydroxyl radicals in cancer cells. However, the development of CDT as a sole cancer treatment has not been possible due to some limitations, such as insufficient catalytic efficiency and unfavorable reaction conditions. Scientists stated that enhancement of temperature could be an effective strategy to improve Fenton/Fenton-like reactions. To date, all the approaches have been based on a photothermal enhancement of CDT, providing an unfavorable low penetration rate for clinical application.
Potential of Hexagonal Tungsten Oxide Nanomaterials for Cancer Therapy
Nanomaterials of tungsten oxide and tungsten bronzes are known to be less toxic, possess many unique properties, and are multifarious crystal structures. Scientists were curious to explore its potential for microwave heating due to some characteristic features of hexagonal tungsten oxide nanomaterials, e.g., large surface area, ions intercalation ability, and tunneled structure. Additionally, the introduction of cations into tungsten oxide makes it a favorable candidate for CDT.
Scientists believe that the combination of CDT and MWA could be an efficient cancer treatment strategy. Keeping this in mind, researchers of the current study thought that exploring flexible redox states of the W element (W5+/W6+) could be ideal for developing a novel W-based nanocrystal required for synergistic antitumor therapy.
In this study, researchers developed hexagonal phase NaxWO3 nanocrystals via hydrothermal processes. These nanocrystals were analyzed for their efficiency as microwave sensitizers as well as a nano-catalyst for microwave thermal-enhanced CDT.
Scientists characterized the newly developed NaxWO3 nanocrystals via scanning electron microscope (SEM), which revealed the presence of rod-shaped nanostructures of 100-150 nm length and 100-150 nm diameter. Researchers observed that cationic ions could readily occupy these hexagonal tunneled nanostructures, which hinted at its potential as a microwave thermal sensitizer. Additionally, the incorporation of polyvinylpyrrolidone (PVP) on the surface of NaxWO3 nanostructures was confirmed via FT-IR analysis. In this study, researchers revealed that PVP-modified NaxWO3 nanorods possessed significant biocompatibility and dispersibility.
Scientists reported that both in vitro and in vivo studies revealed that newly synthesized NaxWO3 nanocrystals exhibited promising thermal effects when subjected to microwave irradiation. This might be due to its tunneled structure and ions intercalation properties that promote the trapping of more ions/polar molecules vibrating in a confined space. Additionally, the flexibly reversible redox nature of W elements allows NaxWO3 nanocrystals to degrade endogenous H2O2 into highly active hydroxyl radical through a Fenton-like reaction. Subsequently, via the redox process, NaxWO3 nanocrystals can also consume the reduced substances, i.e., glutathione (GSH).
Importantly, the high concentration of hydroxyl radical and low level of GSH in the malignant cells, instead of healthy tissues, facilitate selective inhibition of tumor cells via mitochondrial dysfunction, elicited by reactive oxygen species (ROS). Another advantage of this approach has been the application of hyperthermia associated with MWA, which can not only trigger coagulative necrosis in malignant cells but also enhance ROS generation by increasing the catalytic efficiency of NaxWO3 nanocrystals via a Fenton-like reaction.
In this study, researchers also studied the efficacy of NaxWO3 nanocrystals in killing cancer cells using 4T1 cells and HUVEC cells. This study showed that an increase in the concentration of NaxWO3 nanocrystals enhanced cytotoxicity on 4T1 cells, and decreased its viability by 67.8%. This result implies the potential of NaxWO3 nanocrystals in inhibiting the growth of cancer cells without affecting healthy cells (HUVEC cells).
Conclusion
The authors of this study stated that the newly synthesized NaxWO3 nanocrystals, with promising microwave heating ability, improved catalytic performance, and biocompatibility could be effectively applied for antitumor therapy.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]