A study recently published in the journal Infection, Genetics and Evolution explored the attachment affinity of carbon nanotubes (CNTs) and carbon nano-fullerene towards numerous molecular targets of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
Computational modeling of the 3D architectures of nano-fullerenes and CNTs was carried out, and molecule binding and molecular dynamic (MD) simulations were used to estimate the attachment affinity of the nanoparticles to the chosen target molecules. The research emphasizes the need of using carbon nanoparticles as a treatment for COVID-19.
COVID-19 Taking the World by Storm
The shocking COVID-19 epidemic attributed to Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), first detected in Wuhan, China, in December of 2019, has since expanded globally. A virulent pathogen, SARS-CoV-2 belongs to the ß-coronavirus family and is a positive-stranded RNA virus. The spike glycoproteins that appear on the envelope give these pathogens a crown-like appearance. Other proteins in the viral structure include membrane and envelope proteins, nucleocapsid protein, and RNA dependent on RNA polymerase as structural proteins.
Inadequacy of Current Treatments
At first, anti-viral medications including remdesivir, lopinavir, chloroquine, and hydroxychloroquine were recommended for COVID-19 infection therapy. Recent assessments, however, proved the ineffectiveness of chloroquine and hydroxychloroquine when combatting SARS-CoV-2. Several drugs are in the early phases of clinical development.
Novel variants of the virus have been discovered in various regions across the globe, with these mutations exhibiting enhanced transmission and pathogenicity, as well as reduced neutralization.
Vaccines are now available to treat COVID-19, although they have not yet reached populations in some countries. The variety of symptoms found in the patients, as well as asymptomatic transmission and vaccination resistance data, indicate that the creation of an alternative treatment answer is imminently needed.

The binding potential of carbon nanofullerene towards the prioritized targets of SARS-CoV-2 is predicted by molecular docking. The binding affinity and interactions of carbon nano fullerene towards (a) spike glycoprotein (−13.7 kcal/mol), (b) RNA dependent RNA polymerase (−12.9 kcal/mol), (c) main protease (−11.4 kcal/mol), (d) papain-like protease (−10.6 kcal/mol) and (d) RNA binding domain of nucleocapsid protein (−10.1 kcal/mol). Image Credit: Skariyachan, S. et al
Nanotechnology and Computational Biology
Modern developments in nanotechnology have revealed the possibility of using nanoparticles such as CNTs and nano-fullerenes to target various areas of SARS-CoV-2, blocking its pathogenic effects. Carbon nanotubes are being touted as potential therapeutic materials owing to excellent mechanical capabilities, structural soundness, and tunability of functional groups.
Nanomaterials may be used to create nano-based COVID-19 protective devices and disinfectants. Furthermore, nanoparticles could be employed to function as antigen carriers or serve as an adjuvant medication for use concurrently with the upcoming COVID-19 vaccines.
The team used computation-based virtual screening and MD simulations to determine the binding capability of carbon nanotubes and nano-fullerenes to numerous putative target areas of the virus. Carbon nano-fullerenes have a potential affinity for SARS-CoV-2 targets, and carbon nanotubes have demonstrated possible interactions that might limit the virus’s harmful mechanism.
Identifying Structural Properties of Recognized Targets
Spike glycoproteins are the principal target of antibodies and are important in stimulating entrance into cells through the transmembrane spike. The transmembrane spike is composed of two functional subunits that are in charge of attaching to receptors of host cells and fusing the membranes of the virus and cells.
Each virus may identify distinct places of attachment and entrance by connecting with specific areas of the receptors in the host cell unit, depending on the type of viral strain. The major constituent of the viral machinery is responsible for replication and transcription; the RNA-dependent RNA polymerase (RdRp) is required for the survival of these viruses. Treatments targeting this area would be an excellent strategy.
The primary protease is an enzyme that is also involved in viral replication and transcription. The major protease is required for the digestion of viral RNA-translated polyproteins. Inhibiting this enzyme may aid in the prevention of viral replication. As a result, these proteins were chosen in the study because they might be potential therapeutic targets for SARS-CoV-2 infection.

The MD simulation trajectories of RNA binding domain of the nucleocapsid protein and nano tube complex (a) RMSD: Protein RMSD (Å) on the y-axis and time on the x-axis (b) Protein RMSF (Å) on the y-axis and residues on the x-axis (c) Protein-ligand contacts over the simulation course, (d) histogram representing interaction fraction on the y-axis and residues on the x-axis (e) Ligand RMSF (Å) on the y-axis and atoms on the x-axis and (f) Major interactions that occur during MD simulation. Image Credit: Skariyachan, S. et al
Conclusions
It may initially seem unimpressive that the targets adopt this orientation only after adsorption on hydrophobic surfaces. However, there is potential for various orientations concerning the adsorption process on hydrophobic or charged areas. Therefore, understanding the interaction modeling of many orientations is critical.
The present research lays the groundwork for future laboratory tests and exploratory trials. Despite the nanoparticles’ apparent toxic nature, they might be employed as possible leads for blocking the coronavirus target areas. Research has shown the success of their use in target-specified treatments, drug transportation processes, cancer-related therapies, and other applications.
The MD simulation tests indicated that the priority entities and nanoparticles undergo dynamic interactions, which are steady and promising. When compared to carbon-fullerenes, nanotubes have the higher binding energy of the two carbon nanoparticles.
News
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]















