Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you.
According to a new study, technology has advanced to the point that it's now possible to sift scraps of human DNA out of the air, water, or soil and decipher personal details about the individuals who dropped them.
As useful as this might seem, the study's authors warn society might not be prepared for the consequences.
"Any time we make a technological advance, there are beneficial things that the technology can be used for and concerning things that the technology can be used for," says University of Florida zoologist David Duffy, who led a project that tested the limits of sequencing human DNA from the environment.
"These are issues we are trying to raise early so policy makers and society have time to develop regulations."
Earth's surface is dusted in discarded plant and animal cells and disintegrated microbes, spilling out what researchers refer to as environmental or 'e' DNA.
By amplifying the smallest scraps of eDNA and reading the sequences, researchers can accurately produce an ecological cast list of organisms present in any one habitat, all at speeds and costs that couldn't be achieved by field work.
What's more, those representative genetic samples can also deliver insights that no other process could accomplish on their own, such as informing researchers on the presence of diseases or the relationships between populations.
This is all well and good when zoologists are plucking long lost genes from ancient sediment, or fishing for signs of a mythological monster in Loch Ness. But in that genetic soup there are bound to be strands of material left by passing humans as well. And unlike Nessie, people tend to get a little funny about who snoops on their genetic secrets.
While older methods of sequencing have struggled to find meaningful human genetic sequences within eDNA samples, a process known as shotgun sequencing isn't quite so limited, as demonstrated by Duffy and his team in their recent investigation.
The research team took water and sand samples from near the Whitney Laboratory for Marine Bioscience and Sea Turtle Hospital at the University of Florida, and from environments along a river in Duffy's home country of Ireland. Among the sites they collected samples from was an isolated island and a mountain stream far from human habitation.
Referred to as human genetic bycatch (HGB), many of the chromosomal fragments they identified using the shotgun approach contained identifying information about their source.
Only the island and remote stream were free of human DNA, although traces of the research team's own genes could be extracted from their footprints in the isolated island's sand.
Air samples from the university's sea turtle hospital also contained eDNA that could be traced to staff, animals, and common animal viruses.
"We've been consistently surprised throughout this project at how much human DNA we find and the quality of that DNA," says Duffy. "In most cases the quality is almost equivalent to if you took a sample from a person."
It's easy to think of ways such highly detailed genetic assays using HGB might be applied in fields of epidemiology or population genetics. Yet the sources of the identifiable DNA in this experiment all consented to be involved in the study, in line with the ethics of published genetic research.
"It's standard in science to make these sequences publicly available. But that also means if you don't screen out human information, anyone can come along and harvest this information," says Duffy.
"That raises issues around consent. Do you need to get consent to take those samples? Or institute some controls to remove human information?"
As a forensics tool, the benefits are something of a doubled-edged sword, expanding on methods for tracing individuals to a scene of a crime.
Yet in light of the CSI effect, where the results of DNA testing is easily misinterpreted by a Hollywood-influenced judiciary, the legal consequences of HGB identification are also yet to be fully explored.
There is also the concern of how far public surveillance should extend in the name of security.
"To be sure, solving crime is a good thing," says Natalie Ram, a law expert from the University of Maryland who wasn't involved in the study.
"But exploiting involuntarily shed genetic information for investigative aims risks putting all of us under perpetual genetic surveillance."
We might imagine an authority maintaining an archive of DNA scraps that have drifted onto just about any crime scene, one few of us would feel comfortable being a part of.
It's far from the first time society has wrestled with the ethical and legal questions of genetic rights, of course. But the net collecting personal genetic information is clearly growing, prompting us to continue asking who should have the ultimate say over the unique code that describes us as individuals.
News
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]















