Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics.
A team of scientists from Scripps Research and the University of North Carolina (UNC) has found antibodies in the blood of certain COVID-19 donors that can block infection from a broad set of coronaviruses—specifically, in people who have recovered from the virus and were then vaccinated. They found this includes not only the COVID-19-causing SARS-CoV-2, but also SARS-CoV-1 and MERS-CoV.
The scientists' detailed study of the antibodies and their virus binding sites, reported on February 15, 2023, in the journal Immunity, could lead to the development of a broad coronavirus vaccine and related antibody therapeutics. Both could be used against future coronavirus pandemics as well as any future variants of SARS-CoV-2.
The other Scripps Research co-senior authors were Dennis Burton, PhD, professor and James and Jessie Minor Chair of the Department of Immunology and Microbiology, and Ian Wilson, PhD, Hansen Professor of Structural Biology and chair of the Department of Integrative Structural and Computational Biology. The co-senior authors from UNC were professor Ralph Baric, PhD, and assistant professor Lisa Gralinski, PhD.
SARS-CoV-2, along with SARS-CoV-1 (the cause of the 2002-04 SARS outbreak) and MERS-CoV (the cause of deadly Middle East Respiratory Syndrome), belong to a broad grouping of coronaviruses known as betacoronaviruses. These viruses mutate at a modestly high rate, creating a significant challenge for the development of vaccines and antibody therapies against them. Thus, in the case of SARS-CoV-2, although existing vaccines have been very helpful in limiting the toll of disease and death from the pandemic, new SARS-CoV-2 variants have emerged that can spread even among vaccine recipients.
Over the past two years, however, the Andrabi/Burton and Wilson laboratories have been finding evidence that SARS-CoV-2 and other betacoronaviruses have a vulnerable site that does not mutate much. This site, which is in the S2 region (or base) of the viral spike protein, is relatively conserved on betacoronaviruses that infect a variety of animal species. By contrast, current SARS-CoV-2 vaccines mainly target the viral spike protein's relatively mutable S1 region, with which the virus binds to host-cell receptors.
The S2 site plays a key role in how betacoronaviruses progress from receptor-binding to the membrane fusion that enables entry into host cells in the respiratory tract. In a study reported last year, the Andrabi/Burton and Wilson laboratories found that some human antibodies can bind to this site on SARS-CoV-2 in a way that apparently disrupts viral fusion and blocks infection. The existence of such a vulnerable site raises the possibility of targeting it to provide both long-lasting and broad protection against betacoronaviruses. Therefore, the researchers, for the new study, made a more comprehensive search for anti-S2 antibodies in blood samples from human volunteers.
These volunteers were individuals who had recovered from COVID-19, had been vaccinated, or had recovered from COVID-19 and then had been vaccinated. Somewhat to the researchers' surprise, they found that antibodies to the vulnerable S2 site were present in the vast majority of volunteers in the latter group—people who had recovered from COVID-19 and then had been vaccinated—but at a much lower frequency in the others. Overall, the researchers identified and characterized 32 of these S2-targeting antibodies.
In lab virus neutralization studies and in virus-challenge studies with mice at UNC, the researchers found that several of these antibodies provide protection of unprecedented breadth— not only against SARS-CoV-2 but also SARS-CoV-1 and MERS-CoV betacoronaviruses.
"In principle, a vaccination strategy that can induce such antibodies is likely to provide broad protection against a diverse spectrum of betacoronaviruses," says Burton.
Structural studies of several of the antibodies when bound to S2 illuminated their common binding sites and modes of binding, providing key information that should aid the development of future vaccines targeting this region.
"Targeted rational vaccine strategies could take advantage of this molecular information of the interactions of these antibodies with the S2 domain to inform the design of pan-betacoronavirus vaccines," says Wilson.
Indeed, the researchers have already applied their findings to the initial design and testing of a potential "pan-betacoronavirus" vaccine candidate, which if successful could be stockpiled to limit future pandemics. The investigators also envision a therapeutic mix of different S2-targeting antibodies, perhaps as a cocktail with antibodies to other spike regions, that could be taken to prevent infection by a novel betacoronavirus or to reduce disease in those already infected.
News
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]















