In a significant step forward in understanding the crucial role tissue-resident memory T (TRM) cells play in the immune system, researchers have for the first time described how the cells behave in different tissues around the body.
This discovery adds to the growing knowledge base around the huge potential of T cell-based vaccines, including second generation COVID-19 vaccines, that would target lung tissue directly.
TRM cells are an immune cell that are exclusively found in tissues, not in circulation or the blood, and have been found to be critical for immune protection against viral infection and are also able to control melanoma growth in the skin.
In this study, published today in Nature Immunology, the research team led by University of Melbourne Professor Laura Mackay, a laboratory head at the Doherty Institute, looked at the behaviour of TRM cells in a number of different body tissues.
By comparing barrier organs that are exposed to the environment, like the skin, to solid organs such as the liver, the team found that the location in which TRMs are raised significantly impacts the way they contribute to immunity, demonstrating that ‘one size does not fit all’ when it comes to these cells.
Dr Susan Christo, a postdoctoral researcher in Professor Mackay’s laboratory, said uncovering the distinct molecular signatures and behaviours of TRM cells in specific tissues will considerably assist in the development of effective T cell-based vaccines and immunotherapies.
“For example, if you want effective T-cell mediated immunity against a respiratory virus like SARS-CoV-2 or influenza, you want to induce TRM cells in the lung. That way, the memory of the infection exists at the site of potential pathogen encounter,” Dr Christo said.
“We found that TRM cells act like chameleons when they enter into a new tissue – they rapidly adapt to the molecules and proteins around them and can take on a new ‘image’ or phenotype.
“The tissue surroundings also control how these cells behave – TRM cells in the skin are suppressed by a particular protein called TGF-b which acts like a handbrake to stop these cells from unnecessary activation that may cause autoimmunity, such as psoriasis, but still allows them to fight against dangers like melanoma.
“One key advantage of skin TRM cells is that they can last a really long time and will be ready to attack when the body is in true danger.
The team found the TRMs that reside in the liver do not have this TGF-b handbrake and therefore have a greater ability to form a bigger pool of cells.
“You could think of them as generating a large army of soldiers that fight the infection. However liver TRMs have a shorter half-life and might not be around to fight future battles,” explained Dr Christo.
“To give the example of malaria, if you want to target immune cells in the liver, you need to work out what needs to be done to make those cells live longer.
“This is also the case for short-lived TRM cells in the lung, which has significant implications on the durability of vaccines against the flu and COVID-19. Therefore, our study provided the first evidence of what our immune cells need to last the distance and protect us for a long time.”

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]