Two-dimensional (2D) nanomaterials like graphene have received great research attention for several years, but a new generation of atom-thick materials – MXenes – has recently captured the interest of materials science researchers and nanotechnology developers alike.
Synthesizing MXene Nanomaterials
MXenes are 2D nanomaterials that exhibit high conductivity, high surface area, high functionalization, a site of hydroxide, and many other interesting properties. They were only discovered in 2011, but have been the subject of many studies ever since.
MXenes are inorganic compounds measuring only a few atoms in thickness and are made up of metal carbides, nitrides, or carbonitrides. These materials combine the metallic conductivity of the transition metal carbides with hydrophilic features imparted by their hydroxyl- or oxygen-terminated surfaces.
The first MXene nanomaterial to be reported in 2011 was Ti4N3. Though, this compound is synthesized in a slightly different manner to most of the other MXenes developed since.
Ti4N3 is synthesized by mixing TI4AlN3 with a molten eutectic fluoride salt made up of lithium fluoride, sodium fluoride, and potassium fluoride. This mixture is treated at a high temperature, causing the Al to etch out and yield multilayered Ti4N3.
This material is then delaminated into single layers by immersion in tetrabutylammonium hydroxide and a subsequent sonication step.
Most MXene nanomaterials, however, are synthesized in a top-down (subtractive) selective etching process. This process is scalable without exhibiting any loss or change in the nanomaterials’ properties when batch sizes increase.
The top-down etching process uses strong etching solutions with a fluoride ion such as hydrofluoric acid (HF), ammonium bifluoride (NH4HF2), or a mixture of lithium fluoride (LiF) and hydrochloric acid (HCI).
For example, aqueous HF at room temperature is used to etch the MXene material Ti3AlC2. The HF selectively removes the Al atoms so that the surface of the carbide layers becomes terminated by O or F atoms.
MXene is also sometimes obtained from Lewis acid molten salts like ZnCl2. This method synthesizes a Cl-terminated MXene structurally stable up to 750 °C.
Rapid Progress in MXene Research
So far, 27 MXene materials have been synthesized. These are formed from elements like titanium, zirconium, molybdenum, niobium, tungsten, and hydrogen, along with carbon.
There have been numerous applications for the materials already. Mxenes are employed as conductive layered materials with tunable surface terminations in energy storage applications, both in Li-ion batteries and supercapacitors.
Applications as photocatalytic cells, transparent conducting electrodes, and neural electrodes also capitalize on Mxenes’ unique electrochemical properties.
The nanomaterials can be used in water purification, gas sensing, triboelectric nanogenerators (TENGs), and electrochromic devices.
Key Applications for the Future of Mxene Nanomaterials
The remarkable and unique properties of Mxene nanomaterials have led researchers tackling science’s major challenges to consider how the materials could be useful in their work. As such, Mxene’s have been investigated for use in environmental projects, cleaner energy production, and lifesaving medical technologies.
Environmental Clean Up and Water Sustainability
Mxene’s high surface area, biological compatibility (non-toxicity), robust electrochemistry, and high hydrophilicity make them ideal candidates for advanced environmental clean technologies.
Nanoarchitectures based on Mxene materials can mitigate the role of inorganic pollutants in interfacial chemical transformation and sorption in ecosystems.
They achieve this through three main mechanisms: surface complexation and sorption, catalytic activation and removal, and radical generation-based photocatalytic degradation.
When applied to drinking water sources and water waste, MXene-based filtration systems can have significant impacts on both local communities’ health and wellbeing, as well as the overall health of their surrounding environments.
Electrocatalysts for Hydrogen Energy
According to many forecasters, hydrogen will play a crucial role in transitioning from a fossil-fuel based economy to clean renewable energy. Generating hydrogen with water electrolysis is the preferred solution at present, being the cleanest and most sustainable method.
The development of non-noble metal electrocatalysts is a hot topic of research in hydrogen power. MXene nanomaterials have recently been explored as potential electrocatalysts for hydrogen evolution reaction (HER) electrocatalysis.
The materials display good HER activity and remarkable stability and may help us to break free from fossil fuels.
Biomedical Applications
MXenes may even save lives, as they are currently being explored for numerous biomedical applications. Their non-toxicity and unique properties make them interesting to researchers working on antibacterial safety, advanced medical imaging technologies, biosensing devices, tissue regeneration, and even cancer therapies.
Still, MXenes’ appropriateness and potential for biomedical applications are still not fully understood. As such, many are invested in characterizing the unique nanomaterials. Doing so would aid in understanding their interactions with other materials, especially organic matter, and fully estimating their potential for use in lifesaving medical technology.
News
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]















