Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways.
These advanced materials are designed to detect specific stimuli, such as heat, pH changes, or light, and react with precise functions, like releasing a drug, changing structure, or switching conductivity. This capability unlocks major possibilities in areas ranging from targeted cancer therapies to adaptive electronics and wearable technologies.1
This progress raises key questions: How exactly do scientists program nanomaterials? What’s happening at the molecular level that allows these materials to act with purpose?
What Does “Programming” Nanomaterials Mean?
Programming nanomaterials means tuning their fundamental properties to control how they behave in different environments.2
This starts at the chemical level: scientists can design a material’s structure to define how it reacts, binds, or transforms under specific conditions. Surface functionalization adds further specificity by attaching molecules such as DNA strands, peptides, or polymers to a material’s surface, enabling selective interactions and triggered behaviors.3
Morphology—the size, shape, and surface texture of nanomaterials—is also crucial. Engineering particles into spheres, rods, cubes, or hollow structures can dramatically affect their optical, catalytic, and mechanical properties. Assembly strategies such as self-assembly and scaffold templating then organize these building blocks into ordered 1D, 2D, or 3D architecture, providing additional levels of structural complexity and functionality.2,3
A core feature of programmed nanomaterials is their ability to respond to external stimuli, including pH shifts, enzymatic activity, temperature changes, light, or chemical signals.3 This dynamic responsiveness underpins closely related fields.
- Stimuli-responsive materials physically or chemically change in response to external cues.
- Smart materials integrate sensing and actuation to autonomously adapt to changing conditions.
- Self-assembling nanostructures use molecular recognition or templating strategies to organize themselves into defined patterns.4
Emerging techniques like DNA-programmed assembly demonstrate how nanomaterials can be “instructed” to form highly ordered structures through bottom-up fabrication. By leveraging predictable DNA base-pairing, scientists can control spatial organization with nanometer-scale precision.4
Mechanisms of Programming: How It’s Done
Programming nanomaterials involves a combination of molecular engineering, templating strategies, and the controlled use of external stimuli. Researchers use complementary approaches to design materials that change structure or function in response to specific conditions.
Each method supports distinct types of responsiveness, enabling tailored behavior for a range of applications.5
Surface Functionalization
Surface functionalization is a fundamental technique. By chemically attaching functional groups, polymers, or biological molecules to a nanoparticle’s surface, scientists can control how it interacts with other particles and its surroundings. Surface chemistry determines key attributes like binding selectivity, reactivity, and sensing ability.
For example, nanoparticles functionalized with DNA strands can self-assemble into highly programmable 2D and 3D architectures. These modifications enable the material to detect molecular cues, bind specific targets, or trigger structural changes.6
Encapsulation Within Nanocarriers
Encapsulation is another key programming technique. Here, active agents such as drugs, catalysts, or sensors are enclosed within nanoscale shells. These carriers are engineered to release their contents only when exposed to specific triggers like pH shifts, enzymatic activity, or temperature changes.
Encapsulation not only protects sensitive cargo but also provides a mechanism for smart delivery, where materials act only under particular biological or chemical conditions, reducing off-target effects.1,5
Responsive Polymers
Responsive polymers add another layer of programmability. These materials change shape, volume, or other physical properties in response to stimuli such as light, heat, electric fields, or mechanical stress.
They can be embedded into nanomaterials to create dynamic systems capable of reversible transformations. Shape-memory polymers and electroactive polymers, for instance, are used to build programmable surfaces and actuators that respond autonomously to environmental triggers.7
Self-Assembly
Self-assembly allows nanomaterials to spontaneously organize into ordered structures without external direction. This process relies on carefully designed interactions between components, often drawing on supramolecular chemistry or DNA-based recognition.6
It enables the creation of complex, hierarchically organized materials, including crystalline lattices, nanoparticle superstructures, and functionalized 3D networks. Innovations in DNA origami and templated polymer assemblies continue to expand what’s possible with programmable nanostructures.6
External Triggers
External stimuli such as light, heat, magnetic fields, or electric fields are often used to program behaviour into nanomaterials post-assembly. Materials engineered with trigger-responsive elements can change color, conductivity, shape, or chemical activity on demand. For example, multi-beam optical interference can sculpt 3D nanomaterials with near-arbitrary complexity by controlling the spatial distribution of light.1, 5
Examples of Programmed Nanomaterials in Action
Targeted Drug Delivery
One of the most compelling applications of programmed nanomaterials is their use in targeted drug delivery systems—platforms designed to release therapeutic agents only under specific conditions, such as changes in pH or temperature. A notable example is the use of pH-responsive delivery systems, which exploit the acidic microenvironment typical of tumors to trigger drug release.8
Researchers have developed hydrogels and nanocomposites that remain stable at physiological pH but degrade or swell in mildly acidic conditions. This structural change enables the controlled release of their therapeutic cargo specifically at the tumor site.
For instance, Mazidi et al. demonstrated this approach using superparamagnetic iron oxide nanoparticles (SPIONs) embedded in a polyurethane nanofiber matrix and loaded with the chemotherapy drug doxorubicin (DOX). Their system showed a strong pH sensitivity, favouring drug release in the acidic environment of tumor tissues.8
Mathematical modeling of the system revealed a mix of non-Fickian and Fickian diffusion behavior, suggesting controlled, long-term drug delivery over more than 60 days. This environment-triggered release mechanism enhances treatment precision, improves therapeutic outcomes, and reduces the risk of off-target side effects.8
Self-Healing Materials
Programmed nanomaterials are also enabling a new generation of self-healing systems, with applications spanning both structural and electronic technologies.
For structural uses, microcapsule-based systems embedded in polymer composites have been widely developed. When damage occurs, the rupture of these microcapsules releases healing agents that autonomously repair cracks, restoring mechanical integrity and extending the material’s lifespan.9
In electronics, self-healing polymers have been created for devices such as organic field-effect transistors, energy storage systems, and flexible sensors. These systems often rely on dynamic chemical bonds, such as hydrogen bonding or π–π interactions, to recover both mechanical and electronic function after damage.9
For example, Munaoka et al. developed self-healing electrodes for lithium-ion batteries and showed that they improved cycling stability and safety by using nanomaterials capable of autonomously repairing microcracks.10
Light-Sensitive Nanoparticles
Another innovative use of programmed nanomaterials is in light-sensitive nanoparticles for photothermal therapy (PTT). These systems utilize upconversion nanoparticles (UCNPs) and X-ray nanoscintillators to convert deeply penetrating near-infrared (NIR) or X-ray light into heat or reactive oxygen species for localized cancer treatment.
UCNPs, such as NaYF₄ doped with Er³⁺ and Yb³⁺, absorb NIR light and emit visible or UV light, which activates photosensitizers attached to their surface or embedded within them. This activation generates localized heat or singlet oxygen, enabling noninvasive tumor ablation.11
Chen et al. reported successful in vivo tumour control using mesoporous silica-coated UCNPs loaded with photosensitizers and functionalized with folic acid for targeted delivery.12 Additional designs used orthogonal emission UCNPs, which could emit different wavelengths under separate NIR excitations, allowing programmable, stepwise treatments for improved therapeutic outcomes.11,12
Looking Ahead
While programmed nanomaterials hold enormous promise, challenges remain, such as scaling production, ensuring safety, and achieving consistent control in complex environments.
However, as fabrication techniques and molecular design tools advance, the range of applications continues to grow. From adaptive sensors that respond to real-time biological signals to precision therapies tailored to individual patients, these materials are laying the foundation for more responsive, intelligent systems.
With continued interdisciplinary research, programmed nanomaterials could redefine how we design, treat, and interact with the world around us.
References and Further Readings
1. Van Gough, D.; Juhl, A. T.; Braun, P. V., Programming Structure into 3d Nanomaterials. Materials today 2009, 12, 28-35. https://experts.illinois.edu/en/publications/programming-structure-into-3d-nanomaterials
2. Kahn, J. S.; Gang, O., Designer Nanomaterials through Programmable Assembly. Angewandte Chemie International Edition 2022, 61, e202105678. https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202105678
3. Yang, R. X.; McCandler, C. A.; Andriuc, O.; Siron, M.; Woods-Robinson, R.; Horton, M. K.; Persson, K. A., Big Data in a Nano World: A Review on Computational, Data-Driven Design of Nanomaterials Structures, Properties, and Synthesis. ACS nano 2022, 16, 19873-19891. https://pubs.acs.org/doi/10.1021/acsnano.2c08411
4. Luo, C.; He, L.; Chen, F.; Fu, T.; Zhang, P.; Xiao, Z.; Liu, Y.; Tan, W., Stimulus-Responsive Nanomaterials Containing Logic Gates for Biomedical Applications. Cell Reports Physical Science 2021, 2. https://www.sciencedirect.com/science/article/pii/S2666386421000357
5. Xie, M.; Gao, M.; Yun, Y.; Malmsten, M.; Rotello, V. M.; Zboril, R.; Akhavan, O.; Kraskouski, A.; Amalraj, J.; Cai, X., Antibacterial Nanomaterials: Mechanisms, Impacts on Antimicrobial Resistance and Design Principles. Angewandte Chemie International Edition 2023, 62, e202217345. https://pubmed.ncbi.nlm.nih.gov/36718001/
6. He, L.; Mu, J.; Gang, O.; Chen, X., Rationally Programming Nanomaterials with DNA for Biomedical Applications. Advanced Science 2021, 8, 2003775. https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/advs.202003775
7. Waidi, Y. O., Recent Advances in 4d‐Printed Shape Memory Actuators. Macromolecular Rapid Communications 2025, 2401141. https://pubmed.ncbi.nlm.nih.gov/40014667/
8. Mazidi, Z.; Javanmardi, S.; Naghib, S. M.; Mohammadpour, Z., Smart Stimuli-Responsive Implantable Drug Delivery Systems for Programmed and on-Demand Cancer Treatment: An Overview on the Emerging Materials. Chemical Engineering Journal 2022, 433, 134569. https://ui.adsabs.harvard.edu/abs/2022ChEnJ.43334569M/abstract
9. Mashkoor, F.; Lee, S. J.; Yi, H.; Noh, S. M.; Jeong, C., Self-Healing Materials for Electronics Applications. International Journal of Molecular Sciences 2022, 23, 622. https://pmc.ncbi.nlm.nih.gov/articles/PMC8775691/
10. Munaoka, T.; Yan, X.; Lopez, J.; To, J. W.; Park, J.; Tok, J. B. H.; Cui, Y.; Bao, Z., Ionically Conductive Self‐Healing Binder for Low Cost Si Microparticles Anodes in Li‐Ion Batteries. Advanced Energy Materials 2018, 8, 1703138. https://www.scholars.northwestern.edu/en/publications/ionically-conductive-self-healing-binder-for-low-cost-si-micropar
11. Sun, B.; Teo, J. Y.; Wu, J.; Zhang, Y., Light Conversion Nanomaterials for Wireless Phototherapy. Accounts of Chemical Research 2023, 56, 1143-1155. https://pubmed.ncbi.nlm.nih.gov/36897248/
12. Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L.; Wang, X.; Tao, Y.; Huang, A. J.; Hashimotodani, Y.; Kano, M.; Iwasaki, H., Near-Infrared Deep Brain Stimulation Via Upconversion Nanoparticle–Mediated Optogenetics. Science 2018, 359, 679-684. https://pubmed.ncbi.nlm.nih.gov/29439241/

News
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]
This Tiny Cellular Gate Could Be the Key to Curing Cancer – And Regrowing Hair
After more than five decades of mystery, scientists have finally unveiled the detailed structure and function of a long-theorized molecular machine in our mitochondria — the mitochondrial pyruvate carrier. This microscopic gatekeeper controls how [...]