In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis.
Methylthioninium Chloride (MB) Dyes Threatening the Environment
Dye and sewage drainage into waterways by factories is a significant ecological issue. The dye produced by large textile factories and other businesses has major environmental consequences.
MB dyes, which pose major ecological concerns, are among the substantial quantities discharged. The cationic MB (methylthioninium chloride) dye is very acidic in nature, causing damage to underwater life as well as the well-being of humans.
How can Nanoparticles Help in Mitigating Pollution?
Nanotechnology has an important and decisive role in pollution elimination. Nanoparticle (NP) research has gained popularity in the last couple of decades owing to the exceptional properties of nanoparticles and their numerous applications. The large surface-to-volume ratio of NPs boosts their beneficial qualities.
Green manufactured NPs have been proven to have greater relevance in the breakdown of dyes than chemically fabricated NPs, resulting in a novel strategy for tackling water contamination concerns.
Biological Synthesis of Nanoparticles – The Way Forward
Chemical techniques of NP fabrication use more energy, are more expensive and employ hazardous chemicals. In comparison, the biological creation of NPs uses lesser energy, is inexpensive, and uses only harmless chemicals.
Many botanical components, including stems, roots, leaves, and flowers were employed in the extract to fabricate NPs. Several therapeutic plants, including Lippia citriodora, Alpinia nigra, Kalanchoe pinnata, and Gmelina arborea, have recently been used to synthesize silver nanoparticles (Ag NPs).
The Role of Silver Nanoparticles
Ag NPs have piqued the interest of scientists due to their distinctive qualities such as chemical and photonic stability, as well as catalytic, optoelectronic and antibacterial characteristics. The catalytic process has been identified as among the most successful dye removal strategies. Owing to their active pore locations, Ag NPs maximize their catalytic properties.
Using Citrus X sinensis for Synthesis of Silver Nanoparticles
Citrus is an evergreen plant that is thriving in the Brazilian area. It can also be seen in South China, Myanmar, and Northeast India. This species belongs to the Rutaceae family. Colloquially referred to as sweet orange, Citrus X sinensis has been claimed to possess medicinal and antioxidant properties.
The occurrence of carbohydrates, alkaloids, flavonoids, phenolics, tannins, triterpenes, and saponins was discovered in Citrus X sinensis extracts. The fruits of Citrus X sinensis were utilized to fabricate Ag NPs in this research. After experiencing a photocatalyzed reduction in ultraviolet light, the Citrus X sinensis-coated Ag NPs were used to break down the MB dye.
Examining the Catalytic Activity of Produced Silver Nanoparticles
The catalytic performance of green fabricated Ag NPs for MB was investigated under direct sunlight. In 100 milliliters of 30 ppm methylthioninium chloride dye solution, a 10-milligram catalyst was introduced. Prior to illumination, the solution was stirred for 15 minutes in darkness to reach adsorption and desorption equilibrium.
The process continued to progress when exposed to sunshine. The dye breakdown process was conducted by subjecting the solution to sunlight at different time durations. The solution was centrifuged after each exposure to sunlight to remove the catalyst.
Key Findings of the Study
For the synthesis of Ag NPs in this study, a green and efficient process was adopted. Citrus X sinensis fruit extract was used to successfully generate Ag NPs. These fruit extracts were demonstrated to cause a reduction of AgNO3 to produce Ag NPs.
Characterization results from ultraviolet-visible analysis demonstrated that the Citrus X sinensis fruit extract had a significant influence on the stability of the synthesized nanoparticles. SEM scans confirmed the formation of sphere-shaped NPs with a uniform size distribution.
Green Ag NPs were shown to be efficient in catalyzed reduction of methylthioninium chloride dyes. Moreover, the nanoscale catalyst reusability investigation revealed that the catalyst is robust enough for repetitive usage. The photocatalyzed breakdown data showed that Ag NPs deteriorated 82.2 percent of the MB dye in 75 minutes.
This study’s results suggested that biologically synthesized silver nanoparticles made from Citrus X sinensis fruit extract are suitable for photocatalytic activity.

News
Can our mitochondria help to beat long Covid?
At Cambridge University’s MRC Mitochondrial Biology Unit, Michal Minczuk is one of a growing number of scientists around the world aiming to find new ways of improving mitochondrial health. This line of research could help [...]
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]