t typically takes many years of experiments to develop a new medicine. Although vaccines to protect against disease from the novel coronavirus are starting to reach clinics around the world, patients and doctors will still need treatments to manage COVID-19 symptoms for some time.
At Pacific Northwest National Laboratory (PNNL), computational biologists, structural biologists, and analytical chemists are using their expertise to safely accelerate the design step of the COVID-19 drug discovery process.
Rather than finding a new drug by trial and error, scientists are taking the three-dimensional structures of proteins from the novel coronavirus and using computer modeling and machine learning to identify a unique molecule that best fits inside a binding pocket on a protein’s surface. Ideally, that molecule clogs the viral protein and prevents it from functioning.
“Drug research and development is a complex, costly, and time-consuming process, particularly considering the majority of molecules advanced from the design phase fail in clinical trials,” said PNNL computational data scientist Neeraj Kumar. “Computer-based screening incorporates chemical information during the design process to increase a drug candidate’s potential for success in clinical testing.”
Developing an approach to speed drug discovery during this pandemic could also reveal new design steps that might be useful during the next outbreak.
Clogging coronavirus proteins
There are almost 30 different proteins in this novel coronavirus that are potential targets for COVID-19 drug discovery. Combine that with millions of molecules that are potential drug candidates, and the possibilities for matching molecules to specific proteins are mind-boggling.
To narrow the options towards molecules with potential to become medicines, Kumar and his team first use molecular docking to virtually screen libraries of known molecules and regulatory-approved drugs. Ones that fit in the binding pocket of a particular coronavirus protein make the short list for the next step of the process: testing the fit with actual proteins and molecules.
Experimental scientists then combine the molecules on this short list with purified coronavirus protein and “weigh them” with native mass spectrometry to see if the protein picked up the molecule. This technique measures interactions between the protein and the molecules and can confirm the predicted binding.
Image Credit: Timothy Holland | Pacific Northwest National Laboratory
Post by Amanda Scott, NA CEO. Follow her on twitter @tantriclens
Thanks to Heinz V. Hoenen. Follow him on twitter: @HeinzVHoenen

News
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]