Scientists have recently developed electrochemical immunosensors based on graphene oxide−gold (GO−Au) nanocomposites. These immunosensors are highly sensitive with dual function, i.e., they can detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen and antibody. This study is available in the journal ACS Applied Bio Materials.
Impact of Global Outbreak of Diseases
In the last century, the world has witnessed several global outbreaks that include influenza, severe acute respiratory syndrome coronavirus (SARS-CoV), middle east respiratory syndrome coronavirus (MERS), and most recently, SARS-CoV-2. The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, has drastically impacted the global healthcare system and economy. To date, this virus has claimed more than 6.2 million lives and infected around 517 million individuals worldwide.
Scientists worldwide have worked extensively to develop effective preventive measures and sensitive diagnostic tools for fast and accurate detection of the SARS-CoV-2 virus. Early detection of the disease would help prevent further transmission of the virus in the community.
Diagnostic Tools for SARS-CoV-2
Although reverse transcriptase-polymerase chain reaction (RT-PCR) can accurately detect the SARS-CoV-2 virus by identifying viral genomic RNA, it requires expensive setups and highly skilled personnel for its operation. Scientists have stated serological-based methods, e.g., enzyme-linked immunosorbent assay (ELISA), for the detection of SARS-CoV-2 antibodies, are mind-numbing and time-consuming, which restricts their usage for mass testing for COVID-19 antibodies.
Previous studies have reported the development of biosensors, based on field-effect transistor (FET), electrochemical, and fluorescence, to detect COVID-19 disease. Electrochemical biosensors could be extremely advantageous over other biosensors because of their high sensitivity, accuracy, easy operation, and rapid detection processes. Scientists have stated that there is a need to develop superior electrochemical biosensors with greater transducing capabilities, applicability, and high active surface area.
Previous studies have shown that several nanomaterials and nanocomposites, for example, gold nanoparticles (AuNPs), graphene oxide (GO), and reduced graphene oxide (RGO), are promising constituents for novel electrochemical biosensors.
Development of Highly Sensitive Electrochemical Immunosensor for SARS-CoV-2: A New Study
Scientists have synthesized GO−Au nanocomposites to fabricate two immunosensors used to detect SARS-CoV-2 antigen and antibody. The newly developed GO−Au nanocomposites possess high conductivity, a large surface to area ratio, and several functional groups for their binding with biomolecules.
The authors have characterized the newly synthesized nanocomposites using UV−Vis spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The average particle size of the AuNPs in the nanocomposite was measured to be 12.1 nm. UV-Vis analysis revealed the presence of characteristic peaks of GO (265 nm) and Au (538 nm) in the synthesized GO-Au nanocomposite. Interestingly, XRD analysis showed a peak at 26.4°, which implied a partial reduction of GO in the nanocomposite. TEM image indicated a uniform dispersion of AuNPs in the nanocomposite as well as its polycrystalline nature.
The electrochemical activity of GO-Au nanocomposite and fabricated immunosensors were analyzed through differential pulse voltammetry (DPV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) techniques. Scientists performed all electrochemical measurements in redox electrolytes.
CV helped determine SARS-CoV-2 antibody−antigen interaction on electrode surfaces. Both CV and DPV results revealed effective fabrication of the SARS-CoV-2 antibody immunosensor.
In this study, researchers reported that the SARS-CoV-2 antigen immunosensor exhibited excellent sensitivity with a linear detection range between 10.0 ag mL–1 and 50.0 ng mL–1. They further estimated the detection range of antibody immunosensor to be between 1.0 fg mL–1 and 1.0 ng mL–1. For the SARS-CoV-2 antibody immunosensor, the limit of detection (LOD) was measured to be 1 fg mL−1. Similarly, the LOD of the SARS-CoV-2 antigen immunosensor was estimated to be 3.99 ag mL−1.
Synthetic samples were used initially to analyze both the immunosensors and the results were later validated using serum and nasopharyngeal swab samples of COVID-19 patients. They obtained samples from nine different COVID-19 patients to validate their findings. Both DPV analysis and voltammetric characterization showed that the SARS-CoV-2 antibody immunosensor and SARS-CoV-2 antigen immunosensor could be effectively utilized to study clinical samples.
To further determine the sensitivity of the immunosensors, scientists used nasopharyngeal samples of seven different patients (four SARS-CoV-2 negatives and three positives). The results obtained in this study were consistent with the RT-PCR test.
Conclusion
In this study, the authors developed electrochemical immunosensor platforms based on newly developed GO−Au nanocomposites. These immunosensors have a dual function, i.e., detection of both SARS-CoV-2 antibodies as well as antigen. In the future, these immunosensors could be used to develop portable point of contact (POC) devices for accurate detection of the SARS-CoV-2 virus.
News
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]















