Although blood-biomarker-based tests help in the early diagnosis of Alzheimer’s disease, the low abundance of blood protein biomarkers related to Alzheimer’s disease and the complexity of the human serum environment pose a challenge in diagnosis and treatment.
Due to the small size of nanomaterials, they are considered promising candidates for constructing biosensors with high sensitivity. Moreover, fabricating nanomaterials-containing transistor-based biosensors is challenging on a large scale and often lacks sensitivity and reproducibility in complex physiological fluids.
In an article recently published in the journal ACS Sensors, mass production of field-effect transistor (FET) biosensors based on carbon nanotube thin films was reported to realize high selectivity and sensitivity toward the detection of Alzheimer’s disease blood biomarkers of beta (β)-amyloid (Aβ).
The mass-produced carbon nanotube FET-sensors were combined with oligonucleotide aptamers to achieve efficient bioreceptors that enable reproducible and reliable Aβ42 and Aβ40 peptide detection in human serum with sub-femtomolar detection sensitivity, thus outperforming other existing detection methods towards Alzheimer’s disease.
Application of Carbon Nanotube Network Films Toward Alzheimer’s Disease Detection
Alzheimer’s disease is the common cause of dementia and leads to progressive cognitive decline. Moreover, Alzheimer’s disease is incurable and irreversible after the outset of cognitive symptoms. Hence, early diagnosis and disease-modifying treatments before the onset of symptoms are critical for Alzheimer’s disease treatment.
In Alzheimer’s disease diagnosis, Aβ protein level measurement in cerebrospinal fluid (CSF) and Aβ positron emission tomography (PET) imaging are currently applied detection methods. However, these are not extensively applied because obtaining CSF fluid involves an invasive lumbar puncture, and PET imaging is an expensive procedure.
To this end, diagnosis based on Alzheimer’s disease blood biomarkers can be a better alternative to previously mentioned methods due to simple peripheral blood sample requirement, minimal invasion, and the low cost of the procedure. However, the low concentration of Alzheimer’s disease proteins in the blood, the significant presence of interferants in the blood that cause masking effects, and protein’s large dynamic range are a few challenges posed by Alzheimer’s disease blood biomarkers-based diagnosis.
Nanomaterials-based FET sensors are next-generation, highly sensitive, and label-free methods with high- integration capability. Despite the outstanding performance of nano-FET sensors, their clinical application for blood-based biomarkers detection remains challenging to facilitate their application in diagnosing Alzheimer’s disease.
Semiconducting carbon nanotube network films are promising nanomaterials to construct FET biosensors with ultra-sensitivity. However, large-scale fabrication of carbon nanotube FET-based biosensors to detect ultralow biomarker concentrations with quick response in complex physiological environments remains unexplored.
Aptamer-Functionalized Carbon Nanotube FET Biosensors for Alzheimer’s Disease Diagnosis
In the present work, carbon nanotube FETs functionalized with nucleic acid aptamers were manufactured via a high-throughput fabrication process. In doing so, the team was able to achieve a highly selective and sensitive biosensor array for detecting Aβ proteins in serum at low concentrations and thereby promoting the clinical application of carbon nanotube FET-based sensor in early diagnosis of Alzheimer’s disease.
This FET sensor leverages the advantages of semiconducting carbon nanotube network film and DNA aptamers that are modified on a floating gate (FG) insulator. These modified DNA aptamers serve as Aβ40 and Aβ42 peptide selective receptors for the early detection of Alzheimer’s disease.
DNA aptamer-functionalized carbon nanotube FETs can detect Aβ40 and Aβ42 peptides in undiluted serum and single-strength phosphate buffer saline with a limit of detection (LoD) of 50 attomoles. The DNA aptamer-functionalized carbon nanotube FET sensors were highly selective towards Aβ peptides, immunoglobin G (IgG), and albumin masking proteins. Thus, carbon nanotube FET sensors outperform other Alzheimer’s disease sensing methods.
Moreover, the biological substrate’s adsorption to carbon nanotube FET biosensor has enhanced the selectivity ratios of up to 800% (Aβ42) and 730% (Aβ40). The DNA aptamer-functionalized carbon nanotube FET biosensor showed a quick response, wide dynamic range, low variation, and reduced overall cost, making this rapid detection method applicable for mass screening and early diagnosis of Alzheimer’s disease.
Conclusion
To summarize, aptamer-functionalized carbon nanotube FET biosensors were fabricated and explored for early diagnosis of Alzheimer’s disease by detecting the corresponding serum biomarkers in undiluted and single-strength PBS human serum. The aptamer-functionalized carbon nanotube FETs showed a broad analytical range with LoDs as low as 45 attomoles for Aβ42 and 55 attomoles for Aβ40.
The multi-blocking step reduced the nonspecific adsorption of biological matrix on aptamer-functionalized carbon nanotube FETs. Despite the presence of structurally similar proteins in the biological matrix solution, the selectivity ratio was improved by 800%. Moreover, these aptamer-functionalized carbon nanotube FETs showed a high recovery rate of 88 to 108%, high accuracy, serum-based long-term stability, and high reproducibility with less than 10% device-to-device variation.
Due to the high reliability and outstanding sensing properties, aptamer-functionalized carbon nanotube FET biosensors showed great potential as a cost-effective, reliable, and quick clinical platform, contributing toward advancements in mass screening tests and early diagnosis for Alzheimer’s disease.
News
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]















