Although blood-biomarker-based tests help in the early diagnosis of Alzheimer’s disease, the low abundance of blood protein biomarkers related to Alzheimer’s disease and the complexity of the human serum environment pose a challenge in diagnosis and treatment.
Due to the small size of nanomaterials, they are considered promising candidates for constructing biosensors with high sensitivity. Moreover, fabricating nanomaterials-containing transistor-based biosensors is challenging on a large scale and often lacks sensitivity and reproducibility in complex physiological fluids.
In an article recently published in the journal ACS Sensors, mass production of field-effect transistor (FET) biosensors based on carbon nanotube thin films was reported to realize high selectivity and sensitivity toward the detection of Alzheimer’s disease blood biomarkers of beta (β)-amyloid (Aβ).
The mass-produced carbon nanotube FET-sensors were combined with oligonucleotide aptamers to achieve efficient bioreceptors that enable reproducible and reliable Aβ42 and Aβ40 peptide detection in human serum with sub-femtomolar detection sensitivity, thus outperforming other existing detection methods towards Alzheimer’s disease.
Application of Carbon Nanotube Network Films Toward Alzheimer’s Disease Detection
Alzheimer’s disease is the common cause of dementia and leads to progressive cognitive decline. Moreover, Alzheimer’s disease is incurable and irreversible after the outset of cognitive symptoms. Hence, early diagnosis and disease-modifying treatments before the onset of symptoms are critical for Alzheimer’s disease treatment.
In Alzheimer’s disease diagnosis, Aβ protein level measurement in cerebrospinal fluid (CSF) and Aβ positron emission tomography (PET) imaging are currently applied detection methods. However, these are not extensively applied because obtaining CSF fluid involves an invasive lumbar puncture, and PET imaging is an expensive procedure.
To this end, diagnosis based on Alzheimer’s disease blood biomarkers can be a better alternative to previously mentioned methods due to simple peripheral blood sample requirement, minimal invasion, and the low cost of the procedure. However, the low concentration of Alzheimer’s disease proteins in the blood, the significant presence of interferants in the blood that cause masking effects, and protein’s large dynamic range are a few challenges posed by Alzheimer’s disease blood biomarkers-based diagnosis.
Nanomaterials-based FET sensors are next-generation, highly sensitive, and label-free methods with high- integration capability. Despite the outstanding performance of nano-FET sensors, their clinical application for blood-based biomarkers detection remains challenging to facilitate their application in diagnosing Alzheimer’s disease.
Semiconducting carbon nanotube network films are promising nanomaterials to construct FET biosensors with ultra-sensitivity. However, large-scale fabrication of carbon nanotube FET-based biosensors to detect ultralow biomarker concentrations with quick response in complex physiological environments remains unexplored.
Aptamer-Functionalized Carbon Nanotube FET Biosensors for Alzheimer’s Disease Diagnosis
In the present work, carbon nanotube FETs functionalized with nucleic acid aptamers were manufactured via a high-throughput fabrication process. In doing so, the team was able to achieve a highly selective and sensitive biosensor array for detecting Aβ proteins in serum at low concentrations and thereby promoting the clinical application of carbon nanotube FET-based sensor in early diagnosis of Alzheimer’s disease.
This FET sensor leverages the advantages of semiconducting carbon nanotube network film and DNA aptamers that are modified on a floating gate (FG) insulator. These modified DNA aptamers serve as Aβ40 and Aβ42 peptide selective receptors for the early detection of Alzheimer’s disease.
DNA aptamer-functionalized carbon nanotube FETs can detect Aβ40 and Aβ42 peptides in undiluted serum and single-strength phosphate buffer saline with a limit of detection (LoD) of 50 attomoles. The DNA aptamer-functionalized carbon nanotube FET sensors were highly selective towards Aβ peptides, immunoglobin G (IgG), and albumin masking proteins. Thus, carbon nanotube FET sensors outperform other Alzheimer’s disease sensing methods.
Moreover, the biological substrate’s adsorption to carbon nanotube FET biosensor has enhanced the selectivity ratios of up to 800% (Aβ42) and 730% (Aβ40). The DNA aptamer-functionalized carbon nanotube FET biosensor showed a quick response, wide dynamic range, low variation, and reduced overall cost, making this rapid detection method applicable for mass screening and early diagnosis of Alzheimer’s disease.
Conclusion
To summarize, aptamer-functionalized carbon nanotube FET biosensors were fabricated and explored for early diagnosis of Alzheimer’s disease by detecting the corresponding serum biomarkers in undiluted and single-strength PBS human serum. The aptamer-functionalized carbon nanotube FETs showed a broad analytical range with LoDs as low as 45 attomoles for Aβ42 and 55 attomoles for Aβ40.
The multi-blocking step reduced the nonspecific adsorption of biological matrix on aptamer-functionalized carbon nanotube FETs. Despite the presence of structurally similar proteins in the biological matrix solution, the selectivity ratio was improved by 800%. Moreover, these aptamer-functionalized carbon nanotube FETs showed a high recovery rate of 88 to 108%, high accuracy, serum-based long-term stability, and high reproducibility with less than 10% device-to-device variation.
Due to the high reliability and outstanding sensing properties, aptamer-functionalized carbon nanotube FET biosensors showed great potential as a cost-effective, reliable, and quick clinical platform, contributing toward advancements in mass screening tests and early diagnosis for Alzheimer’s disease.

News
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]