Probably you’ve heard about hacking smartphones, emails, cards, computers. Even hacking elections. But what about hacking your body? What?! This concept is called biohacking and it’s really all about self-improvement. The possibilities are endless, all around the idea that we can change our bodies and our brains using technology. Maybe you’ve read about a former NASA employee injecting himself with DNA using gene-editing technology CRISPR. Maybe you’ve heard of some folks engaging in “dopamine fasting” or you have a colleague who’s had a chip implanted in his hand. These are all types of biohacking also known as DIY biology. It’s a difficult term to explain because it involves a huge range of activities, from performing science experiments to pumping a younger person’s blood into veins in the hope that it’ll fight old age. (is a real thing, and it’s called a young blood transfusion).
Some biohackers have science PhDs; others are complete amateurs, but those who have more notoriety are the ones who experiment on their own bodies with the hope of boosting their physical and cognitive performance. The more data you have on your body’s mechanical functions, the more you can be optimized. Yeah! Creepy! But it’s true. These ones are called grinders or transhumanists. They use implants to augment their lives. The implants allow them to do everything from opening doors to monitoring their glucose levels subcutaneously. Even for some kinds of track sports such as the 100-meter sprint, athletes who run on carbon-fiber blades are able to outperform those who run on natural legs. Also failing organs would be replaced soon by longer-lasting high-tech versions just as carbon-fiber blades could replace the flesh, blood, and bone of natural limbs. Some might consider this unethical. For others will be of enormous benefit, but its use still raises all sorts of issues. In the near future, we can also expect the arrival of contact lenses that can take pictures or video, universal language translator earbuds that allow us to communicate anywhere in the world, and exosuits that increase physical strength. They will also lead to implications around which job opportunities are available to those with and without augmented abilities. Also driving a car while writing emails or playing video games while being physically paralyzed is a future not-too-far-off.
But the most powerful is the implantable brain-machine interface. (BMI) These devices will dramatically alter the ways in which we communicate with each other. BMI is a tiny wire very close to one of the brain neurons, with whom you can record the electrical activity it generates and send it to a computer. Record enough of these signals from the right area of the brain and it becomes possible to control computers, robots, or anything else you might want, simply by thinking about moving. But in your brain like in mine, microscopic cells called neurons are sending signals back and forth to each other all the time. Everything we think, do, and feel as interact with the world around us is the result of the activity of these 80 billion or so neurons. Damn difficult to record all of these neurons and then to make them do wherever we need. In a few labs around the world, scientists have been implanting these devices into the brains of people who have lost the ability to control their arms or hands for over a decade. The results were promising but Brain-to-brain communication? Enhanced memory? still closed. Current BMI’s are relatively slow and make mistakes once in a while (For instance, the computer thinks you imagined left-hand movement, while in fact, you imagined right-hand movement). These devices may be portrayed as being able to “mind read” and “decode thoughts” or “stoking fears” that they will unearth innermost secrets. But we didn’t make our brains and we still don’t really know very well how they work. Much less how to “invade” them safely and successfully. (Facebook announced in 2017 it wanted to create a wearable device that would allow typing from the brain at 100 words per minute instead of Neuralink who is striving for 40 words per minute — which is around our average typing speed.) Historically, hardware limitations have caused them to come into contact with more than one region of the brain or produce interfering scar tissue. Pulses from the visual center aren’t like those produced when formulating speech, and it’s sometimes difficult to identify signals’ origination points. All of the challenges haven’t discouraged Facebook, Synchron, Neuralink, Paradromics, Kernel, Ctrl-labs, and others from chasing after a brain-computer interface…and for a new brave world. The development of such a Human Brain Cloud Interface B/CI would enable people to directly access information from the Internet, store their learnings on the cloud, and work together with other connected brains artificial or human. It will be a medium of strange connections past and future. The technologies are in scientific research called “neuralnanorobotics”…
News
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]















