Written by Louis Rosenberg, PhD , CEO and chief scientist of Unanimous AI:
Earlier this month, I participated as a panelist at the Digital Orthopedics Conference in San Francisco (DOCSF 2022) where a major theme was to imagine the medical profession in the year 2037. In preparation for the event, a small group of us reviewed the latest research on the clinical uses of virtual and augmented reality and critically assessed the current state of the field.
I have to admit, I was deeply impressed by how far augmented reality (AR) has progressed over the last eighteen months for use in medicine. So much so, that I don’t expect we’ll need to wait until 2037 for AR to have a major impact on the field. In fact, I predict that by the end of this decade augmented reality will become a common tool for surgeons, radiologists, and many other medical professionals. And by the early 2030s, many of us will go to the family doctor and be examined by a physician wearing AR glasses.
The reason is simple:
Augmented reality will give doctors superpowers.
I’m talking about superhuman capabilities for visualizing medical images, patient data, and other clinical content. The costs associated with these new capabilities are already quite reasonable and will decrease rapidly as augmented reality hardware gets produced in higher volumes in the coming years.
The first superpower is x-ray vision.
Augmented reality will give doctors the ability to peer directly into a patient and see evidence of trauma or disease at the exact location in their body where it resides. Of course, the ability to look under the skin already exists with tools like CT and MRI scanning, but currently, doctors view these images on flat screens and need to imagine how the images relate to the patient on the table. This type of mental transformation is an impressive skill, but it takes time and cognitive effort, and is not nearly as informative as it would be if doctors could simply gaze into the human body.
With AR headsets and new techniques for registering 3D medical images to a patient’s real body, the superpower of x-ray vision is now a reality. In an impressive study from Teikyo University School of Medicine in Japan, an experimental emergency room was tested with the ability to capture whole-body CT scans of trauma patients and immediately allow the medical team, all wearing AR headsets, to peer into the patient on the exam table and see the trauma in the exact location where it resides. This allowed the team to discuss the injuries and plan treatment without needing to refer back and forth to flat screens, saving time, reducing distraction, and eliminating the need for mental transformations.
In other words, AR technology takes medical images off the screen and places them in 3D space at the exact location where it’s most useful to doctors – perfectly aligned with the patient’s body. Such a capability is so natural and intuitive, that I predict it will be rapidly adopted across medical applications. In fact, I expect that in the early 2030s doctors will look back at the old way of doing things, glancing back and forth at flat screens, as awkward and primitive.
Going beyond x-ray vision, the technology of augmented reality will provide doctors with assistive content overlaid onto (and into) the patient’s body to help them with clinical tasks. For example, surgeons performing a delicate procedure will be provided with navigational cues projected on the patient in real-time, showing the exact location where interventions must be performed with precision. The objective is to increase accuracy, reduce mental effort, and speed up the procedure. The potential value for surgery is extreme, from minimally invasive procedures such as laparoscopy and endoscopy to freehand surgical efforts such as placing orthopedic implants.
The concept of augmented surgery has been an aspiration of AR researchers since the core technologies were first invented. In fact, it goes back to the first AR system (the Virtual Fixtures platform) developed at Air Force Research Laboratory (AFRL) in the early 1990s. The goal of that project was to show that AR could boost human dexterity in precision tasks such as surgery. As someone who was involved in that early work, I must say that the progress the field has made over the decades since is remarkable.
Consider this – when testing that first AR system with human subjects in 1992, we required users to move metal pegs between holes spaced two feet apart in order to quantify if virtual overlays could enhance manual performance. Now, thirty years later a team at Johns Hopkins, Thomas Jefferson University Hospital, and Washington University, performed delicate spinal surgery on 28 patients using AR to assist in the placement of metal screws with precision under 2-mm. As published in a recent study, the screw-placement system achieved such accurate registration between the real patient and the virtual overlays, surgeons scored 98% on standard performance metrics.
Looking forward, we can expect augmented reality to impact all aspects of medicine as the precision has reached clinically viable levels. In addition, major breakthroughs are in the works that will make it faster and easier to use AR in medical settings. As described above, the biggest challenge for any precision augmented reality application is accurate registration of the real world and the virtual world. In medicine, this currently means attaching physical markers to the patient, which takes time and effort. In a recent study from Imperial College London and University of Pisa, researchers tested a “markerless” AR system for surgeons that uses cameras and AI to accurately align the real and virtual worlds. Their method was faster and cheaper, but not quite as accurate. But this is early days – in the coming years, this technology will make AR-supported surgery viable without the need for costly markers.
This brings me to another superpower I expect doctors to have in the near future – the ability to peer back in time. That’s because physicians will be able to capture 3D images of their patients using AR headsets and later view those images aligned with their patient’s bodies. For example, a doctor could quickly assess the healing progress of a skin lesion by examining the patient through AR glasses, interactively peering back and forth in time to compare the current view with what the lesion looked like during prior visits.
Overall, the progress being made by researchers on medical uses of virtual and augmented reality is impressive and exciting, having significant implications to both medical education and medical practice. To quote Dr. Stefano Bini of UCSF Department of Orthopaedic Surgery, “the beneficial role of AR and VR in the upskilling of the healthcare workforce cannot be overstated.”
I agree with Dr. Bini and would go even further, as I see augmented reality impacting the workforce far beyond healthcare. After all, the superpowers of x-ray vision, navigational cues, dexterity support, and the ability to peer back in time will be useful for everything from construction and auto repair to engineering, manufacture, agriculture, and of course education. And with AR glasses being developed by some of the largest companies in the world, from Microsoft and Apple, to Meta, Google, Magic Leap, HTC and Snap, these superpowers will almost certainly come to mainstream consumers within the next five to ten years, enhancing all aspects of our daily life.
Louis Rosenberg, PhD is CEO and chief scientist of Unanimous AI and has been awarded more than 300 patents for his work in VR, AR and AI.

News
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]