At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed.
They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially revolutionizing the creation of complex molecular structures and quantum corrals for advanced electronics.
Revolutionizing Nanostructure Construction with AI
The properties of a material are often shaped less by its chemical composition and more by how its molecules are arranged within the atomic lattice or on its surface. Materials scientists harness this principle by positioning individual atoms and molecules on surfaces using high-performance microscopes. However, this process is highly time-consuming, and the resulting nanostructures remain relatively simple.
A research group at TU Graz aims to revolutionize this approach with artificial intelligence. “We want to develop a self-learning AI system that positions individual molecules quickly, specifically and in the right orientation, and all this completely autonomously,” says Oliver Hofmann from the Institute of Solid State Physics, who heads the research group. This advancement could enable the construction of highly complex molecular structures, including nanoscale logic circuits.
The research group, called “Molecule Arrangement through Artificial Intelligence,” has secured €1.19 million ($1.23 million) in funding from the Austrian Science Fund to turn this vision into reality
Advanced Techniques in Molecular Positioning
The positioning of individual molecules on a material’s surface is carried out using a scanning tunneling microscope. The tip of the probe emits an electrical impulse to deposit a molecule it is carrying. “A person needs a few minutes to complete this step for a simple molecule,” says Oliver Hofmann. “But in order to build complicated structures with potentially exciting effects, many thousands of complex molecules have to be positioned individually and the result then tested. This of course takes a relatively long time.”
AI Integration for Enhanced Precision
However, a scanning tunneling microscope can also be controlled by a computer. Oliver Hofmann’s team now wants to use various machine learning methods to get such a computer system to place the molecules in the correct position independently. First, AI methods are used to calculate an optimal plan that describes the most efficient and reliable approach to building the structure. Self-learning AI algorithms then control the probe tip to place the molecules precisely according to the plan.
“Positioning complex molecules at the highest precision is a difficult process, as their alignment is always subject to a certain degree of chance despite the best possible control,” explains Hofmann. The researchers will integrate this conditional probability factor into the AI system so that it still acts reliably.
The Future of Quantum Corrals
Using an AI-controlled scanning tunneling microscope that can work around the clock, the researchers ultimately want to build so-called quantum corrals. These are nanostructures in the shape of a gate, which can be used to trap electrons from the material on which they are deposited. The wave-like properties of the electrons then lead to quantum-mechanical interferences that can be utilized for practical applications. Until now, quantum corrals have mainly been built from single atoms.
Oliver Hofmann’s team now wants to produce them from complex-shaped molecules: “Our hypothesis is that this will allow us to build much more diverse quantum corrals and thus specifically expand their effects.” The researchers want to use these more complex quantum corrals to build logic circuits in order to fundamentally study how they work at the molecular level. Theoretically, such quantum corrals could one day be used to build computer chips.
Collaborative Research and Expertise Synergy
For its five-year program, the research group is pooling expertise from the fields of artificial intelligence, mathematics, physics, and chemistry. Bettina Könighofer from the Institute of Information Security is responsible for the development of the machine learning model. Her team must ensure that the self-learning system does not inadvertently destroy the nanostructures it constructs.
Jussi Behrndt from the Institute of Applied Mathematics will determine the fundamental properties of the structures to be developed on a theoretical basis, while Markus Aichhorn from the Institute of Theoretical Physics will translate these predictions into practical applications. Leonhard Grill from the Institute of Chemistry at the University of Graz is primarily responsible for the real experiments on the scanning tunneling microscope.
Reference: “MAM-STM: A software for autonomous control of single moieties towards specific surface positions” by Bernhard Ramsauer, Johannes J. Cartus and Oliver T. Hofmann, 6 June 2024, Computer Physics Communications.
DOI: 10.1016/j.cpc.2024.109264

News
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]