An international research group has for the first time reconstructed ancestors dating back 2.6 billion years of the well-known CRISPR-Cas system, and studied their evolution over time. The results suggest that the revitalized systems not only work, but are more versatile than current versions and could have revolutionary applications. Nature Microbiology has published the results of this research, which, in the opinion of the research team, “opens up new avenues for gene editing.”
The acronym CRISPR refers to the repeated sequences present in the DNA of bacteria and archaea (prokaryotic organisms). Among the repeats, these microorganisms harbor fragments of genetic material from viruses that infected their ancestors; that enables them to recognize a repeat infection and defend themselves by cutting the invaders’ DNA using Cas proteins associated with these repeats. It is a mechanism (CRISPR-Cas system) of antiviral defense. This ability to recognize DNA sequences is the basis of their usefulness, and they act as if they were molecular scissors. Nowadays CRISPR-Cas technology enables pieces of genetic material to be cut and pasted into any cell, so that it can be used to edit DNA.
Current research efforts focus on finding new versions of CRISPR-Cas systems with distinct properties in the farthest reaches of the globe. To do this, systems of different species living in extreme environments are explored, or molecular design techniques are applied to modify them. A radically different way of finding new systems is to look for them in the past, which is in fact the basis of this research.
The Nanobiotechnology group at nanoGUNE, led by Raúl Pérez-Jiménez, has spent years studying the evolution of proteins from the origin of life right up to the present day. Ancestral reconstructions of proteins and genes from extinct organisms are carried out to see what qualities they have and whether they can be used in biotechnological applications. It is a journey back in time conducted by means of biocomputing techniques. In this work, which has just been published in the journal Nature Microbiology, the evolutionary history of CRISPR-Cas systems, from ancestors dating back 2.6 billion years to the present day, has been reconstructed for the first time.
The research team carried out the computational reconstruction of the ancestral CRISPR sequences, synthesized them, and studied and confirmed their functionality. “What is surprising is that we can revitalize Cas proteins that must have existed billions of years ago and find that they already had the capacity then to operate as gene editing tools; we have now confirmed that by successfully editing genes in human cells,” explained Lluís Montoliu, researcher at the National Biotechnology Center of the CSIC (CNB-CSIC) and CIBERER, and head of the team that has functionally validated these ancestral Cas proteins in human cells in culture.
Another interesting finding in the study is that the CRISPR-Cas system has gradually become more complex over time, which is a sign of the adaptive nature of the system; it has been gradually adapting to new virus threats that have been hanging over bacteria throughout evolution.
“This research signifies an extraordinary advance in knowledge about the origin and evolution of CRISPR-Cas systems. About how the selective pressure of viruses has over billions of years been fine-tuning rudimentary, initially not very selective machinery; this had been taking place until a sophisticated defense mechanism was produced; it is a mechanism capable of distinguishing with great precision between its own DNA, which it must preserve, and the genetic material of unwanted invaders, which it must destroy,” said University of Alicante researcher Francis Mojica, who discovered the CRISPR-Cas technique. On the applied side, “the work represents an original approach to the development of CRISPR tools to generate new tools and improve those derived from existing ones in current organisms,” added Mojica.
“Current systems are highly complex and are adapted to function within a bacterium. When the system is used outside this environment, for example in human cells, it is rejected by the immune system and there are also certain molecular restrictions that limit its use. Oddly enough, in ancestral systems some of these restrictions disappear, which gives these systems greater versatility for new applications,” said Pérez-Jiménez.
Miguel Angel Moreno, head of the Genetics Service at HRYC-IRYCIS-CIBERER, said, “The ingenuity that an ancestral nuclease could have, insofar as it does not so specifically recognize some regions of the genome, turns them into more versatile tools for correcting mutations that until now could not be edited or were not corrected very efficiently.” His team has developed the Mosaic Finder tool, which, by means of massive sequencing and bioinformatics analysis, has enabled the effect of genome editing carried out by these ancestral Cas in human cells in culture to be characterized.
Ylenia Jabalera, researcher in the project at nanoGUNE, says, “This scientific achievement can make available gene editing tools with properties different from the current ones, and which are much more flexible; that opens up new avenues in DNA manipulation and treatment of diseases such as ALS, cancer and diabetes, or even in diagnostic tools for diseases.”

News
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]
New production process for therapeutic nanovesicles
Particles known as extracellular vesicles play a vital role in communication between cells and in many cell functions. Released by cells into their environment, these “membrane particles” consist of a cellular membrane carrying a [...]
Could studying African killifish be the secret cure to sarcopenia?
The Australian Regenerative Medicine Institute (ARMI) at Monash University suggests that muscle wasting, known as sarcopenia, may be reversed in late-life The study utilized the African killifish as a model and found that muscles revert [...]
Virtual AI Radiologist: ChatGPT Passes Radiology Board Exam
The most recent version of ChatGPT, an AI chatbot developed for language interpretation and response generation, has successfully passed a radiology board-style exam, demonstrating both its potential and limitations, according to research studies published [...]
Harnessing Energy Waves: Smart Material Prototype Challenges Newton’s Laws of Motion
University of Missouri researchers designed a prototype of a small, lightweight active ‘metamaterial’ that can control the direction and intensity of energy waves. Professor Guoliang Huang of the University of Missouri has developed a [...]
Nanotechnology revolutionizes the way cancer-fighting T cells navigate and combat tumors
Vanderbilt researchers are bolstering the fight against cancer with technology that enhances the effectiveness of T cells that attack tumors. The cutting-edge research was recently published in the journal Science Immunology. Cancers co-opt both [...]
Molecular “Superpower” of Antibiotic-Resistant Bacteria Revealed in New Research
A species of ordinary gut bacteria that we all carry flourishes when the intestinal flora is knocked out by a course of antibiotics. Since the bacteria is naturally resistant to many antibiotics, it causes problems, particularly [...]
Human DNA Is All Over The Planet, And Scientists Are Worried
Every skin flake, hair follicle, eyelash, and spit drop cast from your body contains instructions written in a chemical code, one that is unique to you. According to a new study, technology has advanced [...]
Long COVID: The Invisible Consequence of Socioeconomic Inequality
A recent study conducted by the Universities of Southampton and Oxford reveals a strong correlation between the incidence of long COVID and the level of area-specific deprivation. It found that individuals from the most deprived regions are 46 [...]
Mutation Mystery: Unraveling the Secret Behind COVID-19’s Rapid Spread
Molecular modeling suggests structural consequences of an early protein mutation that promoted viral transmission. RIKEN researchers discovered that an early mutation (D614G) in the SARS-CoV-2 virus may have contributed to its rapid spread by altering the spike [...]
Protein nanoparticle vaccine with adjuvant improves immune response against influenza
A novel type of protein nanoparticle vaccine formulation containing influenza proteins and adjuvant to boost immune responses has provided complete protection against influenza viral challenges, according to a new study published by researchers in [...]
Decoding Long COVID: NIH Study Exposes the Inner Workings of Neurological Symptoms
A NIH study on twelve Long COVID patients found differences in immune cell profiles and autonomic dysfunction, contributing to the understanding of the condition and potentially leading to better diagnoses and new treatments. Twelve [...]
Pancreatic Cancer Vaccine Shows Promise in Small Trial
Using mRNA tailored to each patient’s tumor, the vaccine may have staved off the return of one of the deadliest forms of cancer in half of those who received it. Five years ago, a [...]