New research provides insight into the structure of silicon nanocrystals, a substance that promises to provide efficient lithium ion batteries that power your phone to medical imaging on the nanoscale.
The research was conducted by a team of University of Alberta chemists, lead by two PhD students in the Department of Chemistry, Alyx Thiessen and Michelle Ha.
“Silicon nanocrystals are important components for a lot of modern technology, including lithium ion batteries,” said, Thiessen, who is studying with Professor Jonathan Veinot. “The more we know about their structure, the more we’ll understand about how they work and how they can be used for various applications.”
In two recently published papers (Chemistry of Materials, “Silicon Nanoparticles: Are They Crystalline from the Core to the Surface?” and Solid State Nuclear Magnetic Resonance, “Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles”), the research team characterized the structure of silicon nanocrystals more quickly and accurately than ever before, using a cutting-edge technique known as dynamic nuclear polarization (DNP).
“Using the DNP technology, we were able to show that larger silicon nanocrystals have a layered structure that is disordered on the surface, with a crystalline core that is separated by a middle layer,” explained Ha, who is studying under the supervision of Assistant Professor Vladimir Michaelis. “This is the first time this has been documented in silicon nanocrystals.”

Image Credit:  Haoyang (Emmett) Yu


News This Week

Cyber defense for nanoelectronics

Today’s societies critically depend on electronic systems. Past spectacular cyber-attacks have clearly demonstrated the vulnerability of existing systems and the need to prevent such attacks in the future. The majority of available cyber-defenses concentrate [...]

Bending the norm on nanowires

New methods of arranging silver nanowires make them more durable, shows a study by KAUST. These nanowires form flexible, transparent conductive layers that can be used for improved solar cells, strain sensors and next-generation mobile [...]