Like Frankenstein, Marc Miskin’s robots initially lie motionless. Then their limbs jerk to life.

But these robots are the size of a speck of dust. Thousands fit side-by-side on a single silicon wafer similar to those used for computer chips, and, like Frankenstein coming to life, they pull themselves free and start crawling.

“We can take your favorite piece of silicon electronics, put legs on it and then build a million of them,” said Dr. Miskin, a professor of electrical and systems engineering at the University of Pennsylvania. “That’s the vision.”

He imagines a wealth of uses for these microbots, which are about the size of a cell. They could crawl into cellphone batteries and clean and rejuvenate them. They might be a boon to neural scientists, burrowing into the brain to measure nerve signals. Millions of them in a petri dish could be used to test ideas in networking and communications.

The research, presented at a meeting of the American Physical Society in Boston in March, is the latest step in the vision that physicist Richard Feynman laid out in 1959 in a lecture, “There’s Plenty of Room at the Bottom,” about how information could be packed into atomic-scale structures and molecular machines could transform technology.

Image Credit:  From article

Read more at nytimes.com

News This Week

Watch Elon Musk’s Neuralink presentation

Electric vehicles, rockets... and now brain-computer interfaces. Elon Musk's newest venture, Neuralink, aims to bridge the gap between humans and artificial intelligence by implanting tiny chips that can link up to the brain. [...]

Ethics in the Age of Artificial Intelligence

Digital information technology has made information readily accessible to practically anyone, anytime and anywhere. This has had a profound effect in shaping all aspects of our society from industrial manufacturing, to distribution, to the [...]