Formation of new blood vessels, a process also known as angiogenesis, is one of the major clinical challenges in wound healing and tissue implants. To address this issue, researchers from Texas A&M University have developed a clay-based platform to deliver therapeutic proteins to the body to assist with the formation of blood vessels.

The team is led by members of the Inspired Nanomaterials and Tissue Engineering Lab in the Department of Biomedical Engineering. They have developed technology that introduces a new type of two-dimensional clay, also known as nanosilicates, that delivers multiple specialized proteins called growth factors into the body to stimulate new blood vessel formation. To allow blood vessels time to form, the clay is designed to prolong the release through its high surface area and charged characteristics, according to biomedical engineering assistant professor Dr. Akhilesh K. Gaharwar.

“Clay nanoparticles work like tiny weak magnets that hold the growth factors within the polymeric hydrogels and release very slowly,” Gaharwar said. “Sustained and prolonged release of physiologically relevant doses of growth factors are important to avoid problems due to high doses, such as abrupt tissue formation.”

Read more at labmanager.com

Image Credit:   Texas A&M University

News This Week

Are the COVID Vaccines Unusually Ineffective?

Are the COVID vaccines substantially different from/inferior to other vaccines in terms of their effectiveness? The issue raised, and I'm mostly paraphrasing here, is this: Most vaccines (e.g. measles, smallpox) have efficacy defined such [...]

COVID Vaccines Compared

There are three COVID-19 vaccines approved for use in the U.S. The Pfizer, Moderna, and Johnson & Johnson vaccines are all highly effective in protecting you from the virus that causes COVID-19. The Pfizer [...]