‘Suicide Handshakes’ Kill Precursor T Cells that Pose Autoimmune Dangers

A mechanism tries to stop our T cells from causing autoimmune disorders, and it’s like a tight handshake that kills overly aggressive T cells.

A person reaches out for a handshake; the other person takes their hand with two hands and tugs then dies as a consequence. That’s a rough description of newly discovered cellular mechanisms that eliminate T cells that may cause autoimmune disorders.

Although the mechanisms are intertwined with biochemical processes, they also work mechanically, grasping, tugging and clamping, say researchers at the Georgia Institute of Technology, who, for a new study in the journal Nature Immunology, measured responses to physical force acting upon these elimination mechanisms.

The mechanisms’ purpose is to make dangerously aggressive developing immune cells called thymocytes kill themselves to keep them from attacking the body, while sparing healthy thymocytes as they mature into T cells. Understanding these selection mechanisms, which ensure T cells aggressively pursue hordes of infectors and cancers but not damage healthy human tissue, could someday lead to new immune-regulating therapies.

Read more at bme.gatech.edu

Image Credit:    National Institute of Allergy and Infectious Disease / National Institutes of Health

News This Week

An AI strategy is no longer optional

At the New York Times DealBook conference, Intel emphasized it was urgent that every company put an artificial intelligence (AI) strategy in place. The reason, in a word, is data. The data deluge continues [...]

Artificial synapses made from nanowires

Scientists from Jülich together with colleagues from Aachen and Turin have produced a memristive element made from nanowires that functions in much the same way as a biological nerve cell. The component is able [...]

Updated – NanoApps Medical Inc. Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) (Figure 1) and other classes of nanoparticles (e.g., gold coated nanoshells) (Figure 2) might have the capacity to target cancerous tumors, metastasizing cancer cells, [...]

Nonstop tranport of cargo in nanomachines

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks are cilia, antenna-like structures protruding from most vertebrate cells. Whenever cilia [...]

 

2018-11-20T12:29:00+00:00

Leave A Comment