When shrimp shell nanoparticles were mixed into cement paste, the material became substantially stronger — researchers propose an innovation that could lead to less seafood waste and fewer carbon dioxide emissions from concrete production.
A team of Washington State University and Pacific Northwest National Laboratory scientists created nanocrystals and nanofibers of chitin, the second-most common biopolymer in nature, from waste shrimp shells, as reported in the journal Cement and Concrete Composites.
When such small chitin bits, about 1,000 times tinier than a human hair, were mixed into cement paste, the resulting product was up to 40% stronger. The hardening time of the cement was also prolonged by more than an hour, which is a desirable property for lengthy transport and hot weather concrete work.
The concrete industry is under pressure to reduce its carbon emissions from the production of cement. By developing these novel admixtures that enhance the strength of concrete, we can help reduce the amount of required cement and lower the carbon emissions of concrete.
Somayeh Nassiri, Associate Professor, University of California
Nassiri headed the research at WSU.
Concrete is used in vital infrastructure like buildings, bridges, and roads all over the world. It is the second most used material on the planet after water. Cement production is a carbon-intensive process that necessitates the use of fossil fuels to achieve the needed high temperatures (1500 °C).
The limestone used in its manufacturing also decomposes, releasing additional carbon dioxide. Cement production accounts for about 15% of industrial energy consumption and 5% of global emissions of greenhouse gases.
According to Nassiri, the issue of durability primarily motivates the high consumption of the material—concrete cracks quickly and must be replaced or repaired frequently.
In the meantime, seafood waste is a major issue for the fishing industry, which produces between 6 million and 8 million pounds of waste per year globally. According to Hui Li, research assistant professor in WSU’s Composite Materials and Engineering Center and corresponding author on the paper, the majority of that waste is thrown into the sea.
In the current world, dealing with climate change through the circular economy, we want to use waste materials as much as possible. One person’s waste is another person’s treasure.
Somayeh Nassiri, Associate Professor, University of California
Scientists have worked to enhance concrete using cellulose, a common biopolymer. Cellulose additives would sometimes help the concrete and sometimes not, and the scientists could not figure out why this was.
The WSU team investigated chitin materials at the nanoscale in their research. Crab, shrimp, and lobster shells contain about 20-30% chitin, with the remaining being calcium carbonate, another useful additive for cement. In comparison to cellulose, chitin has an extra set of atoms—a functional group—that enables the scientists to regulate the charge on the surface of the molecules and, thus, how they act in the cement slurry.
“Being able to control the charge on the surface is an important piece to controlling how they function in cement. We could do that quite simply on the chitin because of the carboxyl group that sits in the chitin polymer,” said WSU Regents Professor Michael Wolcott, a corresponding author of the paper.
The success of the cement paste hardening came down to how the particles suspended themselves within the cement slurry and interacted with the cement particles.
“The chitin nanoparticles repel individual cement particles enough so that it changes the hydration properties of the cement particle within the system,” he said.
They were able to enhance and target the cement’s properties, such as its uniformity, setting time, resilience, and sturdiness, by adding processed nanocrystals of chitin to it. They discovered a 40% rise in the strength of the concrete’s bending capacity and a 12% increase in its ability to compress.
“Those are very significant numbers. If you can reduce the amount that you use and get the same mechanical function or structural function and double its lifetime, then you’re able to significantly reduce the carbon emissions of the built environment,” Wolcott said.
The scientists are now expecting to scale up their work so that they can produce the additive on a large scale. The study must also continue to achieve the same degree of improvement seen on the cement paste scale on the concrete scale.
Aside from the WSU researchers, the interdisciplinary team included Pacific Northwest National Laboratory scientists. The research was supported by the Department of Energy’s Advanced Research Projects Agency-Energy (ARPA E) program, which funds innovative and unconventional energy technology projects that have the potential to lead to emerging technologies.
News
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]















