If nanotechnology has one clear image in the collective pop-culture consciousness, it is that of nanorobots, nanoscale machines capable of performing mechanical functions. When considering the potential of such a technology, the more astute may ask themselves: How would you manage to direct the movements of these nanorobots?

Researchers at the University of Texas at Austin have discovered a physical phenomenon in the way that semiconductor nanoparticles interact with light when under the influence of an electric field that may answer that question.

In research described in the journal Science Advances, the University of Texas scientists discovered that the strong interactions of light, semiconductor nanoparticles, and electric fields lead to the efficient reconfigurable operation of semiconductor nanomotors, or nanodevices.

Using only optical microscopy, the researchers could distinguish between semiconductor silicon and gold nanoparticles by observing their mechanical responses to light. This method is contactless and cheap compared with traditional measurement techniques.

Read more at spectrum.ieee.org

Image Credit:    Illustration: University of Texas at Austin/Science Advances

News This Week

Innovations in Nanocomposites: A Future Outlook

Nanocomposites are a class of nanomaterials, where one or more nanostructured materials (organic/inorganic) are incorporated in metal, polymer, or ceramic to obtain a new material with many unique properties. Nanocomposites are applied in various [...]

New sensor detects ever smaller nanoparticles

Conventional microscopes produce enlarged images of small structures or objects with the help of light. Nanoparticles, however, are so small that they hardly absorb or scatter light and, hence, remain invisible. Optical resonators increase [...]

How Will the COVID Pills Change the Pandemic?

From a new article By Dhruv Khullar in the New York Times: New antiviral drugs are startlingly effective against the coronavirus—if they’re taken in time. n March, 2020, researchers at Emory University published a paper about a [...]

3D printing approaches atomic dimensions

 A new 3D printing technology makes the production of complex metallic objects at the nanoscale possible. A team of chemists led by a scientist from the University of Oldenburg has developed an electrochemical technique [...]