If nanotechnology has one clear image in the collective pop-culture consciousness, it is that of nanorobots, nanoscale machines capable of performing mechanical functions. When considering the potential of such a technology, the more astute may ask themselves: How would you manage to direct the movements of these nanorobots?

Researchers at the University of Texas at Austin have discovered a physical phenomenon in the way that semiconductor nanoparticles interact with light when under the influence of an electric field that may answer that question.

In research described in the journal Science Advances, the University of Texas scientists discovered that the strong interactions of light, semiconductor nanoparticles, and electric fields lead to the efficient reconfigurable operation of semiconductor nanomotors, or nanodevices.

Using only optical microscopy, the researchers could distinguish between semiconductor silicon and gold nanoparticles by observing their mechanical responses to light. This method is contactless and cheap compared with traditional measurement techniques.

Read more at spectrum.ieee.org

Image Credit:    Illustration: University of Texas at Austin/Science Advances

News This Week

Could COVID-19 have wiped out the Neandertals?

Everybody loves Neandertals, those big-brained brutes we supposedly outcompeted and ultimately replaced using our sharp tongues and quick, delicate minds. But did we really, though? Is it mathematically possible that we could yet be them, [...]

How COVID-19 Reaches the Brain

Using post-mortem tissue samples, a team of researchers from Charité – Universitätsmedizin Berlin have studied the mechanisms by which the novel coronavirus can reach the brains of patients with COVID-19, and how the immune system [...]