Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive.
Researchers developed a clever mouse model that can temporarily eliminate these phages without harming the bacteria, using a UTI treatment ingredient called acriflavine. Their experiments showed that without phages, gut bacteria become less sensitive to antibiotics, suggesting that these tiny viruses might actually worsen the microbiome damage antibiotics cause. This surprising connection could lead to new breakthroughs in gut health research.
Gut Viruses: The Overlooked Partners of Bacteria
Some things are just meant to be together: peanut butter and jelly, salt and pepper — and in your gut, bacteria and the viruses that infect them.
These viruses, known as bacteriophages, naturally target the bacterial species living in your digestive system. Although phages have evolved alongside bacteria for millions of years, they remain far less understood. They're tricky to classify and so closely intertwined with their bacterial hosts that scientists still aren't sure exactly what roles they play.
But what if researchers could compare a gut microbiome with and without these viruses, under otherwise identical conditions?
A New Way to Study Phages
At Virginia Tech, biologist Bryan Hsu and his team figured out how to do just that.
Hsu and graduate student Hollyn Franklin developed a model that can selectively remove bacteriophages from a mouse's gut microbiome — and later restore them — without disturbing the bacteria themselves. In early tests of the model, the researchers found intriguing evidence that phages might actually make gut bacteria more sensitive to antibiotics. Their findings were published today (April 28) in the journal Cell Host & Microbe.
Acriflavine: The Phage-Silencing Compound
What could inhibit a bacteria's viruses but not the bacteria itself? In her early search through the literature, Franklin found a chemical compound called acriflavine that fit the bill. It's a component of a widely available medication used in Brazil to treat urinary tract infections (UTI).
Fortuitously, a member of Hsu's lab and paper co-author, Rogerio Bataglioli, is a native Brazilian. He shipped a massive order of acriflavine to his parent's house. But he forgot to tell his parents it was coming, Hsu said.
"His mom called, and asked, 'Is everything OK? Because 20 boxes of UTI treatment just arrived under your name.'"
From UTI Medicine to Breakthrough Experiment
After that was sorted, Franklin began administering acriflavine to lab mice. Over a period of 12 days, there was a dramatic reduction in the concentration of viral particles. And they didn't bounce back when she stopped administering the drug.
But when Franklin reintroduced a tiny sample of the mouse's own gut microbiome, extracted before treatment, the natural phage populations sprang back to life.
"It went away when we wanted it to, and came back when we wanted it to," said Hsu. "Which means we have a bacteriophage conditional mouse model."
Or, more fun: BaCon mouse model.
The Power of a Switchable Microbiome
To see if the mouse model had some significance for health, Hsu's research team went straight to one of the hottest topics in the field: the collateral damage that antibiotics have on a patient's resident microbial population.
Antibiotics save millions of lives every year, but the drug rages indiscriminately through bad, benign, and beneficial bacteria alike, disrupting our gut microbiome and leaving us vulnerable to new pathogens.
Antibiotics, Gut Microbes, and Phage Interference
Could phages be playing a role in the destructive wake of an antibiotic treatment? Hsu and Franklin used their BaCon mouse model to ask this question and administered antibiotics to mice with and without phage populations.
Their results suggest that phages increase the sensitivity of bacteria to antibiotics.
"It's hard to make definitive conclusions, but these results are telling us that phages have some significance for how we respond to antibiotics," Hsu said.
Phages: Potential Game Changers in Microbiome Health
The next questions, according to Franklin, will explore if phages caused these effects or are simply correlated with them, and what role phages play in diseases, which would open new doors in microbiome studies.
Answers may be served with a side of BaCon mouse.
Reference: 28 April 2025, Cell Host & Microbe.
Funding for this work was provided by the Virginia Tech Institute for Critical Technology and Applied Science, the National Institute of General Medical Sciences of the National Institutes of Health.
Research collaborators include:
- Frank Aylward, associate professor of biological sciences
- Anh Ha, postdoctoral research associate
- Rita Makhlouf, graduate student, biological sciences
- Zachary Baker, graduate student, biological sciences
- Sydney Murphy ´24, former undergraduate researcher in the Hsu Lab
- Hannah Jirsa ´23, former undergraduate researcher in the Hsu Lab
- Joshua Heuler, graduate student, biological sciences
- Teresa Southard, associate professor of anatomic pathology
 
News
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
 
									















 
	 
	 
	 
	