Nanorobots that can drill through the eye

Researchers of the “Micro, Nano and Molecular Systems” Lab at the Max Planck Institute for Intelligent Systems in Stuttgart, together with an international team of scientists, developed propeller-shaped nanorobots that, for the first time, are able to drill through dense tissue as is prevalent in an eye (Science Advances, “A swarm of slippery micropropellers penetrates the vitreous body of the eye”).
They applied a non-stick coating to the nanopropellers, which are only 500 nm wide – exactly small enough to fit through the tight molecular matrix of the gel-like substance in the vitreous. The drills are 200 times smaller than the diameter of a human hair, even smaller than a bacterium´s width.
Their shape and their slippery coating enable the nanopropellers to move relatively unhindered through an eye, without damaging the sensitive biological tissue around them.
This is the first time scientists were able to steer nanorobots through dense tissue, as so far, it has only been demonstrated in model systems or biological fluids.
The researchers´ vision is to one day load the nanopropellers with drugs or other therapeutic agents and steer them to a targeted area, where they can deliver the medication to where it is needed.
Read more at nanowerk.com

Image Credit:    Max Planck Institute for Intelligent Systems in Stuttgart

News This Week

Laboratory’s nanopore research hits a nerve

Since the discovery of biological ion channels and their role in physiology, scientists have attempted to create man-made structures that mimic their biological counterparts. New research by Lawrence Livermore National Laboratory (LLNL) scientists and [...]

Gene Therapy Promotes Nerve Regeneration

Researchers from the Netherlands Institute for Neuroscience (NIN) and the Leiden University Medical Center (LUMC) have shown that treatment using gene therapy leads to a faster recovery after nerve damage. By combining a surgical [...]

2018-11-03T14:03:53+00:00

Leave A Comment