EPFL scientists have developed a unique system that can be used for detecting and analyzing molecules with very a level of high precision and without using any bulky equipment. This latest development paves the way for large-scale, image-based detection of materials assisted by artificial intelligence. The study has been reported in Science.
Organic compounds are typically detected and analyzed by infrared spectroscopy, but this method calls for complex procedures as well as huge and costly instruments which make device miniaturization quite difficult and thus limits its applications in certain medical and industrial applications and for collecting data out in the field, for example, for determining the concentrations of pollutants. Infrared spectroscopy is also essentially restricted by low sensitivities and thus needs large amounts of samples.
Conversely, a research team from EPFL’s School of Engineering and Australian National University (ANU) has designed a sensitive and compact nanophotonic system that is capable of identifying the absorption characteristics of a molecule without using traditional spectrometry. The researchers have already detected organic compounds, polymers, and pesticides with their system, which can also be used with CMOS technology.
The novel system features an engineered surface which is surrounded with countless numbers of very small sensors known as metapixels. These metapixels can create a unique bar code for each molecule that the surface comes into contact, and using advanced pattern recognition and sorting technology (for example, artificial neural networks) these bar code can be extensively analyzed. This study – which turns out to be a meeting point of nanotechnology, physics, and big data – has been reported in the Science journal.
Image Credit: © 2018 EPFL
News This Week
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]








Leave A Comment