EPFL scientists have developed a unique system that can be used for detecting and analyzing molecules with very a level of high precision and without using any bulky equipment. This latest development paves the way for large-scale, image-based detection of materials assisted by artificial intelligence. The study has been reported in Science.
Organic compounds are typically detected and analyzed by infrared spectroscopy, but this method calls for complex procedures as well as huge and costly instruments which make device miniaturization quite difficult and thus limits its applications in certain medical and industrial applications and for collecting data out in the field, for example, for determining the concentrations of pollutants. Infrared spectroscopy is also essentially restricted by low sensitivities and thus needs large amounts of samples.
Conversely, a research team from EPFL’s School of Engineering and Australian National University (ANU) has designed a sensitive and compact nanophotonic system that is capable of identifying the absorption characteristics of a molecule without using traditional spectrometry. The researchers have already detected organic compounds, polymers, and pesticides with their system, which can also be used with CMOS technology.
The novel system features an engineered surface which is surrounded with countless numbers of very small sensors known as metapixels. These metapixels can create a unique bar code for each molecule that the surface comes into contact, and using advanced pattern recognition and sorting technology (for example, artificial neural networks) these bar code can be extensively analyzed. This study – which turns out to be a meeting point of nanotechnology, physics, and big data – has been reported in the Science journal.
Image Credit: © 2018 EPFL
News This Week
Needle-Free: New Nano-Vaccine Effective Against All COVID-19 Variants
A new nano-vaccine developed by TAU and the University of Lisbon offers a needle-free, room-temperature-storable solution against COVID-19, targeting all key variants effectively. Professor Ronit Satchi-Fainaro’s lab at Tel Aviv University’s Faculty of Medical and [...]
Photoacoustic PDA-ICG Nanoprobe for Detecting Senescent Cells in Cancer
A study in Scientific Reports evaluated a photoacoustic polydopamine-indocyanine green (PDA-ICG) nanoprobe for detecting senescent cells. Senescent cells play a role in tumor progression and therapeutic resistance, with potential adverse effects such as inflammation and tissue [...]
How Dysregulated Cell Signaling Causes Disease
Cell signaling is crucial for cells to communicate and function correctly. Disruptions in these pathways, caused by genetic mutations or environmental factors, can lead to uncontrolled cell growth, improper immune responses, or errors in [...]
Scientists Develop Super-Strong, Eco-Friendly Plastic That Bacteria Can Eat
Researchers at the Weizmann Institute have developed a biodegradable composite material that could play a significant role in addressing the global plastic waste crisis. Billions of tons of plastic waste clutter our planet. Most [...]
Building a “Google Maps” for Biology: Human Cell Atlas Revolutionizes Medicine
New research from the Human Cell Atlas offers insights into cell development, disease mechanisms, and genetic influences, enhancing our understanding of human biology and health. The Human Cell Atlas (HCA) consortium has made significant [...]
Bioeconomic Potential: Scientists Just Found 140 Reasons to Love Spider Venom
Researchers at the LOEWE Centre for Translational Biodiversity Genomics (TBG) have discovered a significant diversity of enzymes in spider venom, previously overshadowed by the focus on neurotoxins. These enzymes, found across 140 different families, [...]
Quantum Algorithms and the Future of Precision Medicine
Precision medicine is reshaping healthcare by tailoring treatments to individual patients based on their unique genetic, environmental, and lifestyle factors. At the forefront of this revolution, the integration of quantum computing and machine learning [...]
Scientists Have Discovered a Simple Supplement That Causes Prostate Cancer Cells To Self-Destruct
Menadione, a vitamin K precursor, shows promise in slowing prostate cancer in mice by disrupting cancer cell survival processes, with potential applications for human treatment and myotubular myopathy therapy. Prostate cancer is a quiet [...]
Leave A Comment