Single-cell level protein analysis utilizing mass spectrometry (MS) with picolitre sample volumes needs sensitivity in the range of zeptomole to attomole. An article published recently in the journal Analytical Chemistry discussed an analytical pretreatment method based on a nanofluidic device to downsize the chemical unit operations to the range of femtoliter to picolitre volume in mass spectrometry.
Although mass spectrometry has achieved ultra-high sensitivity detection, preventing sample loss and interfacing between femtolitre to picolitre volumes for pretreatment remains a challenging issue. In this study, the researchers utilized a nanofluidic device to achieve a high-sensitivity detection at the MS interface. Followed by charging analyte molecules by the electrodes, the nanofluidic device helped in the conversion of liquid samples to femtoliter droplets.
After the generation of droplets by a nanofluidic device, an inertial force acted on the sample femtoliter volumed droplet to carry it with a controlled trajectory. Finally, the droplet gets injected into the mass spectrometer instrument. A module was designed and constructed for heat transfer which vaporized all the injected droplets into gas-phase ions. Detecting caffeine ions utilizing the designed MS interface based on a nanofluidic device showed a limit of detection (LOD) of 1.52 attomole.
Compared to the conventional mass spectrometry interface that utilizes electrospray ionization, the present interface based on a nanofluidic device achieved 290 times higher efficiency. Moreover, a 100% sample injection rate was achieved through the nanofluidic method, which resulted in a two-fold higher sensitivity. Thus, the developed methodology based on a nanofluidic device facilitated the analysis of samples in ultrasmall quantities with high sensitivity.
Mass Spectrometry Interface for High Detection Sensitivity
Nanofluidic studies fabricate nanofluidic devices or nanopatterning to achieve a small size. It can achieve nanofluidic manipulation for biological structures and nanoparticles at a nanoscale level. MS-based protein analysis at the single-cell level helps elucidate disease mechanisms and cellular expressions.
Nevertheless, these protein analysis processes need the integration of a pretreatment based on a nanofluidic device to prepare ultrasmall sample volumes before their introduction into a mass spectrometer to facilitate dispersion and prevent sample loss. While microfluidics allows chemical operations in 10 to 100 micromolar spaces, nanofluidics exploits 100−1000 nanomolar spaces with femtolitre to picolitre volumes.
Electrospray ionization (ESI) is a widely used MS interface, which involves applying high voltage to a liquid sample followed by spraying the sample through a capillary, via the electrical repulsive force for ionization. Thus, the sample dispersion by spraying caused by ESI reduces the rate of sample injection into the mass spectrometer, consequently reducing the sensitivity. To this end, nanoESI had reduced capillary size and was extensively used for enhanced sensitivity.
Moreover, MS interfaces utilizing ultrasonic waves and laser ablation to vaporize and eject liquid samples were reported. The piezoelectric interface is another method that shoots sample droplets like an inkjet printer. However, droplets of nanoliter volume are too large to produce gas-phase ions by vaporizing the sample solution.
Femtoliter-droplet MS Interface Utilizing Nanofluidic Device
In their previous work, the team developed a microfluidic device, which utilized a two-step airflow to convert the liquid sample into uniform droplets, followed by their ejection into the air with a controlled trajectory. The droplets generated in this study were of volume between 4 and 25 picolitres. However, this volume range was too large for vaporization.
In the present study, an MS interface based on a nanofluidic device was developed to generate ultrasmall droplets and achieve high-sensitivity analyses, wherein femtoliter-droplet shooter was utilized without sample dispersion. An analytical system was developed with a nanofluidic device integrated MS interface based on a single quadrupole mass spectrometer to prove this principle.
Through the MS interface, which was based on a nanofluidic device, femtoliter droplets were generated. The force that acted on the generated sample droplets carried them with a controlled trajectory and injected them into a mass spectrometer with 100% efficiency. Later, the constructed heat transfer module vaporized the droplets to produce gas-phase ions.
The constructed MS system integrated with an MS interface based on a nanofluidic device helped evaluate the MS detection sensitivity. Results were compared to that of conventional ESI-MS. The results confirmed that the constructed MS interface based on a nanofluidic device detected ultrasmall samples with ultrahigh sensitivity.
What Did the Study Find?
To summarize, the nanofluidic device-based MS interface method was developed to generate femtoliter droplets, which were ejected with a controlled trajectory to achieve high-sensitivity detection. Furthermore, the heat transfer thermal system achieved 100% vaporization of droplets injected into MS’s aperture.
The voltage applied increased the charge imposition efficiency in the sample liquid and the results revealed that the MS interface based on a nanofluidic device achieved high-sensitive MS detection. The ionized caffeine showed 290 times higher sensitivity of detection than conventional ESI due to the achieved femtoliter droplet via MS interface based on a nanofluidic device.

News
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]