In a paper published in the journal Biomacromolecules, a flexible and effective two-step method centered on triazine and azide-alkyne click-chemistry was devised for fluorescent labeling of nanoscale cellulose for use in microscopy applications.
The Vast Potential of Cellulose Nanomaterials
Cellulose, a major constituent of the cell wall in plants, is the most abundantly available structured biopolymer on the planet and is used extensively in the architecture, fabric, and paper industry. Crystalline cellulose nanoparticles generated from biomass, such as cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs), have excellent thermal stability, tensile strength, and specific area.
Due to their unique features, sustainable nanoscale celluloses are already being employed in fields such as tissue engineering, nanomedicine, biosensors, biodegradable polymers, power storage, and water treatment.
Visualizing Nanocellulose Networks via Fluorescence Microscopy
The visualization of nanocellulose dispersion and dynamics within complicated frameworks is often required to use nanocelluloses in real world settings. If the nanocelluloses are luminous, fluorescent microscopy procedures may be used to visualize nanofibers and nanoparticles inside three-dimensional networks due to their sensitivity and selectivity.
According to a previous study, whenever fluorescent CNCs are utilized as medicine carriers, their absorption by macrophages and embryo cells can be tracked, and their biological distribution throughout tissues may be observed. The confocal microscopic technique has been used to study the dispersion of CNCs and their engagement with other elements in emerging bio-composites such as structural CNC polymeric hydrogels and CNC-protein-polymer frameworks.
Fluorescent cellulose has also been utilized to investigate the effects of pretreatment on the morphology, availability, and enzyme-triggered depolymerization of cellulose at high resolutions, hence helping to formulate effective biomass converting techniques.
However, modern scanning techniques such as multiphoton, light-sheet, and super-resolution imaging are seldom used in cellulose research. This is attributable, in part, to a lack of easy, quick, and inexpensive ways for fluorescent labeling of nanocelluloses without affecting their distinctive features.
Challenges Associated with Fluorescence Imaging of Nanocellulose
The difficulty of identifying cellulose in its original state stems from its chemically inert and insoluble nature. Cellulose is composed of linear β−1→4 anhydroglucose polymer (glucan) groups that form into densely packaged crystalline fibrils, showing insolubility in water due to an extensive hydrogen-bonding web.
According to documented fluorescent labeling techniques, the moderately responsive hydroxyl groups on the surface of cellulose are often derivatized with maleimide, amine, or N-hydroxysuccinimide groups which are responsive with supplementary moieties on commercially accessible pigments, and the tagging is carried out as a non-homogenous response.
Since most of these approaches rely on natural solvent swaps, which may promote nanocellulose agglomeration, triazinyl- and hydrazine-substituted fluorophores have been employed to generate aqueous single-step tagging procedures. Dichlorotriazinyl amino-fluorescein (DTAF), a widely accessible fluorophore that has been utilized to tag CNCs, CNFs, and bacterial cellulose (BC), is the most commonly employed pigment in these processes.
This labeling method is inefficient since it competes for hydrolysis processes in aqueous conditions, requiring a considerable surplus of DTAF to obtain significant labeling concentrations. The poor labeling effectiveness of DTAF, combined with its inadequate photostability, has also hampered its usage in high-resolution fluorescent microscopy.
Highlights of the Study
In this study, the researchers developed effective labeling techniques based on triazine linkers, allowing them to perform high-resolution fluorescent imaging on a range of nanocellulose materials. Initially, the fabrication of a novel triazine-based pigment, dichlorotriaznyl piperazine rhodamine (DTPR) was described, allowing cellulose to be labeled with a high-performing fluorophore in a single step.
A two-step triazine- and click-chemistry process was then used to label nanocellulose, avoiding complicated fabrication and lowering tagging costs. The second phase, specifically, required an effective click-reaction which could be done with any commonly obtainable pigment having azide activity. This enabled the employment of a diverse set of fluorophores in cellulose research.
Thanks to the capability of labeling cellulosic materials to varying extents while maintaining the original features of nanocellulose, this approach may be used to tag cellulose for a variety of fluorescence-based investigations and scanning purposes.
The versatility provided by triazine chemistry may also be employed to build bifunctional linkers that enable pigment labeling of nanocellulose for visualizing needs while also introducing a second activity that may be utilized for binding, cross-linkage, or sensing.
The approaches presented should give labeling avenues for visualizing cellulose nanoparticles, which are employed in a wide array of applications.
News
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]















