Chemical separation processes are essential in the manufacturing of many products from gasoline to whiskey. Such processes are energetically costly, accounting for approximately 10–15 percent of global energy consumption. In particular, the use of so-called “thermal separation processes,” such as distillation for separating petroleum-based hydrocarbons, is deeply ingrained in the chemical industry and has a very large associated energy footprint. Membrane-based separation processes have the potential to reduce such energy consumption significantly.
Membrane filtration processes that separate contaminants from the air we breathe and the water we drink have become commonplace. However, membrane technologies for separating hydrocarbon and other organic materials are far less developed.
Penn Engineers are developing new membranes for energy-efficient organic separations by rethinking their physical structure on the nanoscale.
Nanofiltration using self-assembling membranes has been a major research area for Chinedum Osuji, Eduardo D. Glandt Presidential Professor in the Department of Chemical and Biomolecular Engineering, and his lab. The performance of these membranes was highlighted in a previous study describing how the structure of the membrane itself helped to minimize the limiting tradeoff between selectivity and permeability that is encountered in traditional nanofiltration membranes. This technology was also included in last year’s Y-Prize competition, and the winners have advanced a case for its use to produce non-alcoholic beer and wine in a startup called LiberTech.
Now, Osuji’s latest study adapts the membrane for filtration in organic solutions such as ethanol and isopropyl alcohol, and its self-assembling molecules make it more efficient than traditional organic-solvent nanofiltration (OSN).
The study, published in Science Advances, describes how the uniform pores of this membrane, can be fine-tuned by changing the size or concentration of the self-assembling molecules that ultimately form the material. This tunability now opens doors for the use of this membrane technology in solving more diverse real-world organic filtration problems. Researchers in the Osuji lab, including first author and former postdoctoral researcher, Yizhou Zhang, postdoctoral researcher, Dahin Kim and graduate student, Ruiqi Dong, as well as Xunda Feng of Donghua University, contributed to this work.
One challenge the team faced was the difficulty of maintaining membrane stability in organic solvents with different polarities. They selected molecular species, surfactants, that exhibited low solubility in organic fluids, and which could be effectively linked together chemically to provide the required stability. The surfactants self-assemble in water when they are above a certain concentration, and form a soft gel. Such self-assembly—the formation of an ordered state—as a function of concentration is referred to as lyotropic behavior: “lyo-” referring to solution, and “-tropic” referring to order. The gels thus formed are called lyotropic mesophases.
The membranes developed in this study were created by forming first forming lyotropic mesophases of the surfactant in water, spreading the soft gel as a thin film, and then using a chemical reaction to link the surfactants together to form a nanoporous polymer. The size of the pores in the polymer are set by the self-assembled structure of the lyotropic mesophase.
“At a certain concentration in an aqueous solution, the surfactant molecules aggregate and form cylindrical rods, and then those rods will self-assemble into a hexagonal structure, yielding a gel-like material,” says Osuji. “One of the ways we can manipulate the permeability, or size of the pores in our membranes, is by changing the concentration and size of the surfactant molecules used to create the membrane itself. In this study, we manipulated both of those variables to tune our pore sizes from 1.2 nanometers down to 0.6 nanometers.”
These membranes are compatible with organic solvents and can be tailored to address different separation challenges. Organic solvent nanofiltration can reduce the footprint of traditional thermal separation processes. The uniform pore size of the membranes developed here provide compelling advantages in terms of membrane selectivity, and ultimately, energy efficiency as well.
“A specific application for this technology is in biofuel production,” says Osuji. “The isolation of water-miscible alcohols from bioreactors is a key step in the manufacturing of ethanol and butanol biofuels. Membrane separations can reduce the energy used in separation of the product alcohols or fuels, from the aqueous medium in the reactor. The use of membranes is particularly advantageous in smaller scale operations such as this, where distillation is not cost effective.”
“Additionally, the manufacturing of many pharmaceutical products often involves several steps of synthesis in different solvent environments. Those steps require the transfer of a chemical intermediate from one solvent to another miscible solvent, making this new membrane a perfect solution to drug development filtration needs.”
Next steps for their research involve both theory and practice. The team plans to develop new models for membrane rejection and permeability that address the unique flow pattern of solutions through their membranes as well as identify additional future applications for their tunable technology.
News
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]















