The primary function of personal protection equipment (PPE), including facemasks and gloves, is to filter out nanoparticulate aerosols, which are present in the air.
PPE is widely used in medical research, law enforcement, healthcare, and military applications. Conventional PPEs can only filter nanoparticles whose size is above 300 nm and fails to block harmful nanoparticulate aerosols (e.g., virus), which are around 20-300 nm in size.
Recently, scientists developed a lightweight and ultra-compact atomically thin graphene-based filter that can block aerosolized nanoparticles of size in the sub-20 nm range. This study is available in ACS Applied Materials and Interfaces.
Conventional System of Filtering Airborne Nanoparticles
Nanoparticulate aerosols contain toxins, pollutants, and harmful viruses, e.g., influenza virus, coronavirus, and rhinovirus, whose size varies between 20 and 300 nm in diameter. Although conventional air filters, such as 95% efficiency filter (N95) and the high-efficiency particulate air filter (HEPA), exhibit superior air flow rates, they are unable to inhibit nanoparticulate aerosols whose size is less than 300 nm.
Facemasks that can block nanoparticulate aerosols of size below 300 nm are bulky and develop thermal stress due to low breathability. To improve the applicability of PPEs, several strategies are implemented that focus on making porous polymers, with greater thickness, which can filter out nanoparticulate aerosol toxins, pathogens, and pollutants. Two of the major disadvantages of this approach are the inability to provide long-term protection due to inevitable leakages and low breathability owing to the high thickness.
The breathability of conventional polymeric materials has been improved via the introduction of porosity and the development of reactive organic or inorganic composite materials that can inactivate pathogens and degrade harmful substances. Some of the other techniques implemented to improve breathability are the introduction of non-woven materials and the development of hollow fiber membranes via spinning polymer methods.
Nanomaterial Based Filters with Improved Breathability and Filtering Capacity
Fabrication of membranes using nanomaterials, such as vertically aligned carbon nanotubes (CNTs), has led to improved breathability and blockage of nanoparticulate aerosols with a diameter of less than 3 nm. Nevertheless, scientists face challenges in tuning CNT diameters to target specific aerosolized nanoparticulates.
Graphene is an allotrope of carbon with atomic thinness, chemical robustness, superior mechanical strength, and high nanopore density. This material aids in size-selective separation owing to greater tunability. Recently, scientists demonstrated a new strategy to fabricate atomically thin, nanoporous graphene membranes for filtering airborne nanoparticulate of size between 5 and 20 nm with greater airflow i.e., around 7.12 × 10−5 mol m−2 s −1 Pa−1.
The newly synthesized monolayer graphene on copper (Cu) foil, via the chemical vapor deposition (CVD) method, was transferred onto polycarbonate track-etch (PCTE) membrane support containing pores of approximately 200 nm in size. Scanning electron microscopy (SEM) images revealed that synthesized graphene on Cu foil was wrinkled, indicating a continuous graphene layer. Raman spectroscopy with characteristic graphene peak confirms the synthesis of high-quality monolayer graphene film. Analysis of graphene placed on PCTE support via SEM showed that most PCTE pores contained graphene.
Large tears that appeared were mended through the interfacial polymerization (IP) technique. The PCTE support with well-defined cylindrical geometry could seal tears in the graphene layer. It also sealed other macroscopic defects. Post IP, nanopores were introduced through the facile plasma etch of the graphene lattice. These nanopores were characterized to estimate the diffusion-driven flow of ions and molecules, whose sizes ranged between 0.66 nm and 4 nm.
Finally, graphene membranes were mounted in the specially designed setup to determine their performance in filtering aerosol nanoparticles using the silicon dioxide (SiO2) nanoparticle model. The mechanical stability of the membrane was provided by a perforated steel plate. The current study strongly emphasized that a higher air permeability can be offered through an increment in the support pore diameter and support porosity, along with a decrease in the support thickness.
Experimental findings revealed that single-layer graphene on PCTE supports could withstand a pressure difference of up to 100 bars. Nanopore introduced via facile oxygen plasma etch facilitated an increase in the rate of change of pressure values to 3.50 mTorr/s (60 seconds of etch time) and 8.78 mTorr/s (90 seconds of etch times). Further increase in the oxygen plasma time elevated the rate of pressure change until it reached 13.11 mTorr/s in 180 seconds of etch time.
Utilization of SiO2 Nanoparticles Model to Determine the Efficacy of Graphene Filter
Silica aerosols were selected because they are solid spheres with a narrow size distribution. A low concentration of SiO2 nanoparticles was used to exclude the formation of a coating on the graphene filter. Importantly, the rate of change of pressure remained unchanged before and after testing with 5 nm SiO2 nanoparticles.
The graphene filter subjected to 60 seconds of etching showed a distinct change in the rate of pressure, which could be due to the formation of blockage by the nanoparticles. This finding suggested the filtering of aerosolized nanoparticles whose sizes were around 5 nm.
The newly developed compact, lightweight, atomically thin graphene filter can block smaller nanoparticles more effectively and can be applied in medical research, space, healthcare, and beyond.

News
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]