In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor.
The ability to detect and measure the biomarkers in undiluted physiological fluids allows the application of nanosensors in measuring the biological fluid samples whose dilutions are impractical.
Biomarkers for Tear Fluid
Tear fluid is receiving growing attention as biosensors with disease biomarkers, including metabolites, electrolytes, proteins, and enzymes, that provide information on the state of human health. Recently, affinity-based biosensors were developed to detect disease biomarkers. The affinity ligands in the biosensors may be aptamers or antibodies that recognize the target molecules.
Due to the salient features of aptamers and graphene, the aptamer-based affinity nanosensors realized on graphene field-effect transistors (GFETs) have received considerable attention. They allow the sensitive detection of a wide range of analytes from ions to proteins in clinical diagnostics. Graphene nanosensors have small footprints and are ideal detectors of biomarkers in tears.
Aptamer-based Graphene Affinity Nanobiosensor
In the present study, the researchers demonstrated a new approach for detecting and measuring the biomarkers in undiluted human tears by employing an aptamer-based graphene affinity nanosensor. The graphene conducting channel in GFET was protected with a polyethylene glycol (PEG) nanolayer whose selected thickness suppressed the adsorption of nonspecific molecules.
Modifying graphene with PEG of varying molecular weights restricted the nonspecific binding, enabling specificity and selectivity in biomarker detection in undiluted physiological fluids. The experimental results revealed that the fabricated nanosensor’s had the capacity to detect tumor necrosis factor alpha (TNF-α), an inflammatory cytokine, at a detection limit of 0.34 picomolar.
Research Findings
The biomarker (TNF-α) bound guanine-rich aptamer experienced conformational changes and transformed into a compact and stable G-quadruplex via folding. Consequently, the protein-bound negatively charged aptamer approached the graphene surface, resulting in the redistribution of carrier concentration, which increased the drain-source current with an increase in TNF-α concentration.
PEG-modified nanosensors and aptamer were tested in PBS for biomarker measurements. The results revealed that with the increase in TNF-α concentration from 0.008 to 125 nanomoles, the VDirac (Dirac point) decreased from 39 to 9 millivolts with nanosensors modified with PEG of 350-dalton molecular weight, indicating that the binding of aptamer and TNF-α introduced the n-type doping to the graphene.
Similarly, in nanosensors modified with PEG of 1000 and 2000 dalton molecular weight, with the increase in TNF-α concentration from 0.008 to 125 nanomoles, the VDirac (Dirac point) decreased from 55 to 27 millivolts and 30 to 1 millivolt, respectively.
The normalized Dirac point (ΔVDirac/ΔVDirac, max) was used as the representative for sensor output, which was calculated for both PEG-modified and non-PEG-modified devices, and was further plotted as a function of TNF-α concentration. With the increase in TNF-α concentration, a larger concentration of aptamer/ TNF-α complexes was observed, reflecting an increase in sensor output.
Fitting the Hill-Langmuir binding equation allowed the determination of equilibrium dissociation constant KD value of 3.22 nanomoles for non-PEG-modified nanosensors. On the other hand, the KD was found to be 2.17, 2.89, and 2.86 nanomoles for the devices with PEG of molecular weight 350, 1000, and 2000 Daltons, respectively.
The aforementioned KD values suggested that the presence of superficial PEG had no effect on the affinity between TNF-α and aptamer. However, at any given TNF-α concentration, PEG-modified devices had larger output than the non-PEG-modified devices, suggesting that PEG modification increased the Debye screening length on the surface of graphene.
Conclusion
In conclusion, the researchers demonstrated a facile approach to enable specific and sensitive TNF-α detection in undiluted tears in the eye by employing an aptamer-based graphene nanosensor.
The nanosensor was configured as GFET, and its graphene surface was modified with aptamer and PEG. The aptamer was specific in recognizing TNF-α, which induced a carrier change in graphene concentration. Measuring the carrier change determined the concentration of TNF-α.
The PEG nano layer reduced nonspecific adsorption, thereby increasing its specificity, which further depends on the molecular weight of PEG.
Thus, optimizing the PEG molecular weight and attachment method could allow sensitive and specific detection of other biomarkers in undiluted physiological fluids required in healthcare applications.
News
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]
Groundbreaking New Way of Measuring Blood Pressure Could Save Thousands of Lives
A new method that improves the accuracy of interpreting blood pressure measurements taken at the ankle could be vital for individuals who are unable to have their blood pressure measured on the arm. A newly developed [...]
Scientist tackles key roadblock for AI in drug discovery
The drug development pipeline is a costly and lengthy process. Identifying high-quality "hit" compounds—those with high potency, selectivity, and favorable metabolic properties—at the earliest stages is important for reducing cost and accelerating the path [...]
Nanoplastics with environmental coatings can sneak past the skin’s defenses
Plastic is ubiquitous in the modern world, and it's notorious for taking a long time to completely break down in the environment - if it ever does. But even without breaking down completely, plastic [...]















