In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor.
The ability to detect and measure the biomarkers in undiluted physiological fluids allows the application of nanosensors in measuring the biological fluid samples whose dilutions are impractical.
Biomarkers for Tear Fluid
Tear fluid is receiving growing attention as biosensors with disease biomarkers, including metabolites, electrolytes, proteins, and enzymes, that provide information on the state of human health. Recently, affinity-based biosensors were developed to detect disease biomarkers. The affinity ligands in the biosensors may be aptamers or antibodies that recognize the target molecules.
Due to the salient features of aptamers and graphene, the aptamer-based affinity nanosensors realized on graphene field-effect transistors (GFETs) have received considerable attention. They allow the sensitive detection of a wide range of analytes from ions to proteins in clinical diagnostics. Graphene nanosensors have small footprints and are ideal detectors of biomarkers in tears.
Aptamer-based Graphene Affinity Nanobiosensor
In the present study, the researchers demonstrated a new approach for detecting and measuring the biomarkers in undiluted human tears by employing an aptamer-based graphene affinity nanosensor. The graphene conducting channel in GFET was protected with a polyethylene glycol (PEG) nanolayer whose selected thickness suppressed the adsorption of nonspecific molecules.
Modifying graphene with PEG of varying molecular weights restricted the nonspecific binding, enabling specificity and selectivity in biomarker detection in undiluted physiological fluids. The experimental results revealed that the fabricated nanosensor’s had the capacity to detect tumor necrosis factor alpha (TNF-α), an inflammatory cytokine, at a detection limit of 0.34 picomolar.
Research Findings
The biomarker (TNF-α) bound guanine-rich aptamer experienced conformational changes and transformed into a compact and stable G-quadruplex via folding. Consequently, the protein-bound negatively charged aptamer approached the graphene surface, resulting in the redistribution of carrier concentration, which increased the drain-source current with an increase in TNF-α concentration.
PEG-modified nanosensors and aptamer were tested in PBS for biomarker measurements. The results revealed that with the increase in TNF-α concentration from 0.008 to 125 nanomoles, the VDirac (Dirac point) decreased from 39 to 9 millivolts with nanosensors modified with PEG of 350-dalton molecular weight, indicating that the binding of aptamer and TNF-α introduced the n-type doping to the graphene.
Similarly, in nanosensors modified with PEG of 1000 and 2000 dalton molecular weight, with the increase in TNF-α concentration from 0.008 to 125 nanomoles, the VDirac (Dirac point) decreased from 55 to 27 millivolts and 30 to 1 millivolt, respectively.
The normalized Dirac point (ΔVDirac/ΔVDirac, max) was used as the representative for sensor output, which was calculated for both PEG-modified and non-PEG-modified devices, and was further plotted as a function of TNF-α concentration. With the increase in TNF-α concentration, a larger concentration of aptamer/ TNF-α complexes was observed, reflecting an increase in sensor output.
Fitting the Hill-Langmuir binding equation allowed the determination of equilibrium dissociation constant KD value of 3.22 nanomoles for non-PEG-modified nanosensors. On the other hand, the KD was found to be 2.17, 2.89, and 2.86 nanomoles for the devices with PEG of molecular weight 350, 1000, and 2000 Daltons, respectively.
The aforementioned KD values suggested that the presence of superficial PEG had no effect on the affinity between TNF-α and aptamer. However, at any given TNF-α concentration, PEG-modified devices had larger output than the non-PEG-modified devices, suggesting that PEG modification increased the Debye screening length on the surface of graphene.
Conclusion
In conclusion, the researchers demonstrated a facile approach to enable specific and sensitive TNF-α detection in undiluted tears in the eye by employing an aptamer-based graphene nanosensor.
The nanosensor was configured as GFET, and its graphene surface was modified with aptamer and PEG. The aptamer was specific in recognizing TNF-α, which induced a carrier change in graphene concentration. Measuring the carrier change determined the concentration of TNF-α.
The PEG nano layer reduced nonspecific adsorption, thereby increasing its specificity, which further depends on the molecular weight of PEG.
Thus, optimizing the PEG molecular weight and attachment method could allow sensitive and specific detection of other biomarkers in undiluted physiological fluids required in healthcare applications.

News
Our DNA May Evolve Much Faster Than Previously Thought
Rapidly mutating DNA regions were mapped using a multi-generational family and advanced sequencing tools. Understanding how human DNA changes over generations is crucial for estimating genetic disease risks and tracing our evolutionary history. However, some of [...]
AI therapy may help with mental health, but innovation should never outpace ethics
Mental health services around the world are stretched thinner than ever. Long wait times, barriers to accessing care and rising rates of depression and anxiety have made it harder for people to get timely help. As a result, governments and health care providers are [...]
Global life expectancy plunges as WHO warns of deepening health crisis Post-COVID
The World Health Organization (WHO) has sounded the alarm on the long-term health repercussions of the COVID-19 pandemic in its newly released World Health Statistics Report 2025. The report reveals a staggering decline in global [...]
Researchers map brain networks involved in word retrieval
How are we able to recall a word we want to say? This basic ability, called word retrieval, is often compromised in patients with brain damage. Interestingly, many patients who can name words they [...]
Melting Ice Is Changing the Color of the Ocean – Scientists Are Alarmed
Melting sea ice changes not only how much light enters the ocean, but also its color, disrupting marine photosynthesis and altering Arctic ecosystems in subtle but profound ways. As global warming causes sea ice in the [...]
Your Washing Machine Might Be Helping Antibiotic-Resistant Bacteria Spread
A new study reveals that biofilms in washing machines may contain potential pathogens and antibiotic resistance genes, posing possible risks for laundering healthcare workers’ uniforms at home. Washing healthcare uniforms at home could be [...]
Scientists Discover Hidden Cause of Alzheimer’s Hiding in Plain Sight
Researchers found the PHGDH gene directly causes Alzheimer’s and discovered a drug-like molecule, NCT-503, that may help treat the disease early by targeting the gene’s hidden function. A recent study has revealed that a gene previously [...]
How Brain Cells Talk: Inside the Complex Language of the Human Mind
Introduction The human brain contains nearly 86 billion neurons, constantly exchanging messages like an immense social media network, but neurons do not work alone – glial cells, neurotransmitters, receptors, and other molecules form a vast [...]
Oxford study reveals how COVID-19 vaccines prevent severe illness
A landmark study by scientists at the University of Oxford, has unveiled crucial insights into the way that COVID-19 vaccines mitigate severe illness in those who have been vaccinated. Despite the global success of [...]
Annual blood test could detect cancer earlier and save lives
A single blood test, designed to pick up chemical signals indicative of the presence of many different types of cancer, could potentially thwart progression to advanced disease while the malignancy is still at an early [...]
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]