Researchers from RMIT University drew inspiration from an emerging tool in biotechnology – optogenetics – to develop a device that replicates the way the brain stores and loses information.
Optogenetics allows scientists to delve into the body’s electrical system with incredible precision, using light to manipulate neurons so that they can be turned on or off.
The new chip is based on an ultra-thin material that changes electrical resistance in response to different wavelengths of light, enabling it to mimic the way that neurons work to store and delete information in the brain.
Research team leader Dr Sumeet Walia said the technology moves us closer towards artificial intelligence (AI) that can harness the brain’s full sophisticated functionality.
“Our optogenetically-inspired chip imitates the fundamental biology of nature’s best computer – the human brain,” Walia said.
“Being able to store, delete and process information is critical for computing, and the brain does this extremely efficiently.
“We’re able to simulate the brain’s neural approach simply by shining different colours onto our chip.
“This technology takes us further on the path towards fast, efficient and secure light-based computing.
“It also brings us an important step closer to the realisation of a bionic brain – a brain-on-a-chip that can learn from its environment just like humans do.”
Dr Taimur Ahmed, lead author of the study published in Advanced Functional Materials (“Multifunctional optoelectronics via harnessing defects in layered black phosphorus”), said being able to replicate neural behavior on an artificial chip offered exciting avenues for research across sectors.
“This technology creates tremendous opportunities for researchers to better understand the brain and how it’s affected by disorders that disrupt neural connections, like Alzheimer’s disease and dementia,” Ahmed said.

Image Credit:   RMIT University

Read more at nanowerk.com

News This Week

Chemistry in the turbulent interstellar medium

Over 200 molecules have been discovered in space, some (like Buckminsterfullerene) very complex with carbon atoms. Besides being intrinsically interesting, these molecules radiate away heat, helping giant clouds of interstellar material cool and contract [...]