Researchers at the University of Queensland and Vaxxas, a medtech company, announced the development of a high-density microarray patch (HD-MAP) that can deliver a COVID-19 vaccine through the skin without the need for needles. While such minimally invasive vaccine technology is to be welcomed, the major breakthrough is the temperature stability of the vaccine. The researchers were able to stabilize the formulation on the patch so that it can last for one month at room temperature and one week at 40 degrees Celsius (104 F), meaning that the new vaccine technology could help to overcome the cold chain transport hurdles.
Skin-affixed patches offer a variety of advantages over traditional needle injections, including less pain and irritation, and ease of use with people who have trouble with needles, such as young children. There has been a recent spate of microneedle technologies that are intended to deliver a variety of therapeutics through the skin, and it was perhaps only a matter of time before someone applied this technology to a COVID-19 vaccine.
However, the most exciting thing about this vaccine is perhaps not the HD-MAP delivery technology, but rather the logistical potential in its temperature stability. The researchers adapted their system to deliver the low-cost Hexapro vaccine, which was developed at the University of Texas.
“When the Hexapro vaccine is delivered via HD-MAP applicator – rather than a needle – it produces better and faster immune responses,” said David Muller, a researcher involved in the study, via a press release. “It also neutralizes multiple variants, including the UK and South Africa variants. And it’s much more user-friendly than a needle – you simply ‘click’ an applicator on the skin, and 5000 microscopic projections almost-imperceptibly deliver vaccine into the skin.”
The temperature stability of the vaccine could be a game changer in developing countries, where vaccine supplies have been slowed by the need for cold chain transport and cold storage.
“Hexapro, delivered by the high-density microarray patch, could dramatically assist global vaccine rollout effort, particularly for billions of vulnerable people in low- and middle-income countries,” said Muller. “We’ve shown this vaccine, when dry-coated on a patch, is stable for at least 30 days at 25 degrees Celsius and one week at 40 degrees, so it doesn’t have the cold chain requirements of some of the current options.”
So far, the researchers have tested the technology in mice, with promising results, and hope to progress to clinician trials soon.

News
How can Nanotechnology be Used to Reverse Skin Aging?
Although skin aging has not been related to many health complications, it has aesthetic issues. Some of the common symptoms of skin aging are changes in the skin texture (rough, dry, and itchy), discoloration, [...]
Emission of Fe- and Ti-Containing Nanoparticles from Coal-Fired Power Plants
In an article published in the journal Science of the Total Environment, researchers have highlighted the significance and potential risks associated with the release of nanoparticles from coal-fired power plants. Applying the single-particle inductively coupled plasma mass [...]
Covalent Organic Framework Nanofluidic Hybrid Membrane for Osmotic Energy Generation
A paper recently published in the journal ACS Applied Energy Materials demonstrated the feasibility of using a covalent organic framework (COF)-based nanofluidic hybrid membranes (NHMs) to attain enhanced interfacial ion transport for the generation of osmotic [...]
Degradable Nanocomposite Removes Antibiotics from Contaminated Water
The excess fluoroquinolones (FQs) discharged into the aquatic environment due to human activities must be removed cost-effectively. In an article published in the Journal of Cleaner Production, the authors fabricated an environment-friendly dealkaline lignin-grafted Fe3O4 nanoparticles [...]
Light-controlled reactions at the nanoscale
Controlling strong electromagnetic fields on nanoparticles is the key to triggering targeted molecular reactions on their surfaces. Such control over strong fields is achieved via laser light. Although laser-induced formation and breaking of molecular [...]
Bright Future for Nanophotonic Chips with Topological Rainbow Device
A paper recently published in the journal Nature Communications demonstrated an effective method to realize on-chip nanophotonic topological rainbow devices using the concept of synthetic dimensions. Importance of Synthetic Dimensions for the Construction of Topological Nanophotonics [...]
Green Approach to Silver Nanoparticle Fabrication with Citrus Fruits
In a study available in the journal Materials Today: Proceedings, silver nanoparticles (Ag NPs) were fabricated using a green method using Citrus X sinensis. Methylthioninium Chloride (MB) Dyes Threatening the Environment Dye and sewage drainage into [...]
Coronavirus ‘ghosts’ found lingering in the gut
Scientists are studying whether long COVID could be linked to viral fragments found in the body months after initial infection. In the chaos of the first months of the coronavirus pandemic, oncologist and geneticist [...]
Experts perplexed over number of people getting long COVID
Public health experts are divided over how many people are getting long COVID-19, a potentially debilitating condition that comes after a patient has recovered from the coronavirus. Ill effects from the condition can include [...]
Four strange COVID symptoms you might not have heard about
Well over two years into the pandemic, hundreds of thousands of COVID cases continue to be recorded around the world every day. With the rise of new variants, the symptoms of COVID have also evolved. Initially, [...]
A new method for exploring the nano-world
Nanoparticles are everywhere. They are in our body as protein aggregates, lipid vesicles, or viruses. They are in our drinking water in the form of impurities. They are in the air we breath as [...]
Breast Cancer Drug Resistance Tackled By Polymer Nanoparticles
Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published [...]
New imaging method makes microrobots visible in the body
Microrobots have the potential to revolutionize medicine. Researchers at the Max Planck ETH Centre for Learning Systems have now developed an imaging technique that for the first time recognises cell-sized microrobots individually and at [...]
Multifunctional Nanocrystals Enhance Cancer Cell Killing Therapies
Scientists have recently developed multifunctional hexagonal NaxWO3 nanocrystals that can serve as microwave sensitizers to kill cancer cells as well as improve the overall chemodynamic therapy (CDT). This study is available as a pre-proof in Chemical Engineering Journal. [...]
Biotech, nanomedicine, and AI combine for health breakthrough predicted by Apple genius Steve Jobs
Apple’s visionary founder, the late Steve Jobs once said, “the biggest innovations of the 21st century will be at the intersection of biology and technology”. And that prediction is coming true in the drug [...]
Making chemical separation more eco-friendly with nanotechnology
Chemical separation processes are essential in the manufacturing of many products from gasoline to whiskey. Such processes are energetically costly, accounting for approximately 10–15 percent of global energy consumption. In particular, the use of [...]