Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published in the journal ACS Applied Materials and Interfaces.
What is TRAIL?
TNF-related apoptosis-inducing ligand (TRAIL), a part of the TNF superfamily, preferentially promotes cancer cell apoptosis (programmed death) by binding itself to death-associated receptors. As a result, it is regarded as a prospective cancer treatment agent.
TRAIL connects to the death receptors, bringing together caspase-8 and Fas protein-associated death domain (FADD) to create a death-inducing signaling complex (DISC), that triggers the apoptosis mechanism. Yet, resistance to TRAIL significantly reduces the therapeutic effectiveness of TRAIL cancer treatment.
Research Into Apoptosis
Recent studies have demonstrated that calmodulin attaches to DISC to regulate apoptotic impulses, and the mixture of calmodulin antagonists and TRAIL reduces TRAIL-associated breast cancer therapy resistance. Nevertheless, TRAIL protein translation is hampered by weak pharmacokinetic characteristics.
Synergistic calmodulin antagonists combined with TRAIL genetic therapy are considered a potential way to circumvent these restrictions. To increase the effectiveness of TRAIL treatment, it is critical to build a hybrid delivery system that accurately controls the expression of genes and the release of drugs.
To construct such a hybrid delivery system, near-infrared light-based remote and control of cell’s physiological functions has received plenty of interest.
What makes Near-Infrared Light Ideal?
The largest advantage that near-infrared light has is that it may penetrate further into tissues while causing very little damage to the cell. Furthermore, by employing near-infrared absorbing substances, near-infrared light may be transformed into thermal energy or other forms of energy.
Many near infrared-absorbing nanomaterials, such as nanostructures, Prussian blue nano-cubes, up-converting nanoparticles, conjugated polymer-based nanoparticles, and 2D nanomaterials have lately been produced.
Owing to their superior tissue penetrating capabilities and biological compatibility, conjugated polymer-based nanoparticles have been extensively utilized in light-based thermal therapy, bioimaging, and cellular function modulation.
Could Conjugated Polymer-Based Nanoparticles be the Key?
The team demonstrated an approach for gaining control of the tumor PI3K/Akt signaling pathway for increasing cancerous cell apoptosis by using conjugated polymer-based nanoparticles tagged with calmodulin antibody and near-infrared irradiation.
The conjugated polymer-based nanoparticles converted light into thermal energy when subjected to near-infrared light, which triggered the HSP70 promoter.
The triggering of the HSP-70 promotor resulted in the initiation of downstream EGFP gene production in live cells. However, it was deduced that combining light-based thermally regulated genetic expression with disease-associated signaling pathways is more clinically meaningful.
According to the team’s understanding, no research group has documented a technique for reducing breast tumor development through light-based thermal stimulation of TRAIL gene expression with the help of conjugated polymer-based nanoparticles.
In the current research, the team devised a novel technique to eliminate pharmacokinetic inadequacy and TRAIL resistance, Using near infrared-absorbing conjugated polymer-based nanoparticles.
Key Findings of the Study
The team effectively designed near-infrared light-absorbing conjugated polymer-based nanoparticles with dual functionalities to regulate and selectively trigger TRAIL-regulated apoptotic signaling.
The conjugated polymer-based nanoparticles demonstrated significant near-infrared light-based thermal conversion capacity as well as good biological compatibility. The lipid coatings utilized for the conjugated polymer-based nanoparticles were DPPC and DSPE-PEG-PEI, which were subsequently electrostatically linked to therapeutic p-DNA.
The team noted that the transition temperature associated with DPPC and the responsive temperature associated with the HSP-70 promoter in the conjugated polymer-based nanoparticles were both 41°C. This similarity in temperatures allowed conjugated polymer-based nanoparticles to regulate drug release and gene expression concurrently under near-infrared light irradiation.
The conjugated polymer-based nanoparticles converted light into thermal energy and raised the temperature significantly, subsequently triggering an HSP-70 promoter to commence the expression and transcription of TRAIL genes. This resulted in the TRAIL-regulated apoptotic signaling being activated.
Concurrently, the conjugated polymer-based nanoparticles produced W-7, which facilitated the fragmentation of TRAIL-associated caspase-8 and increased cancer cell apoptosis.
The team concluded that conjugated polymer-based nanoparticles/W-7/p-TRAIL might accumulate at tumor locations in vivo and have outstanding anticancer effectiveness and biosafety. As a result, the study offered a viable therapeutic and diagnostic method for remote modulation of TRAIL-regulated apoptotic signaling to increase TRAIL-resistant cancerous cell apoptosis.

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]