Drug resistance is a common phenomenon, with drugs becoming less and less effective as their usage increases. To address this issue, a novel technique employing conjugated polymer-based nanoparticles is presented in the study published in the journal ACS Applied Materials and Interfaces.
What is TRAIL?
TNF-related apoptosis-inducing ligand (TRAIL), a part of the TNF superfamily, preferentially promotes cancer cell apoptosis (programmed death) by binding itself to death-associated receptors. As a result, it is regarded as a prospective cancer treatment agent.
TRAIL connects to the death receptors, bringing together caspase-8 and Fas protein-associated death domain (FADD) to create a death-inducing signaling complex (DISC), that triggers the apoptosis mechanism. Yet, resistance to TRAIL significantly reduces the therapeutic effectiveness of TRAIL cancer treatment.
Research Into Apoptosis
Recent studies have demonstrated that calmodulin attaches to DISC to regulate apoptotic impulses, and the mixture of calmodulin antagonists and TRAIL reduces TRAIL-associated breast cancer therapy resistance. Nevertheless, TRAIL protein translation is hampered by weak pharmacokinetic characteristics.
Synergistic calmodulin antagonists combined with TRAIL genetic therapy are considered a potential way to circumvent these restrictions. To increase the effectiveness of TRAIL treatment, it is critical to build a hybrid delivery system that accurately controls the expression of genes and the release of drugs.
To construct such a hybrid delivery system, near-infrared light-based remote and control of cell’s physiological functions has received plenty of interest.
What makes Near-Infrared Light Ideal?
The largest advantage that near-infrared light has is that it may penetrate further into tissues while causing very little damage to the cell. Furthermore, by employing near-infrared absorbing substances, near-infrared light may be transformed into thermal energy or other forms of energy.
Many near infrared-absorbing nanomaterials, such as nanostructures, Prussian blue nano-cubes, up-converting nanoparticles, conjugated polymer-based nanoparticles, and 2D nanomaterials have lately been produced.
Owing to their superior tissue penetrating capabilities and biological compatibility, conjugated polymer-based nanoparticles have been extensively utilized in light-based thermal therapy, bioimaging, and cellular function modulation.
Could Conjugated Polymer-Based Nanoparticles be the Key?
The team demonstrated an approach for gaining control of the tumor PI3K/Akt signaling pathway for increasing cancerous cell apoptosis by using conjugated polymer-based nanoparticles tagged with calmodulin antibody and near-infrared irradiation.
The conjugated polymer-based nanoparticles converted light into thermal energy when subjected to near-infrared light, which triggered the HSP70 promoter.
The triggering of the HSP-70 promotor resulted in the initiation of downstream EGFP gene production in live cells. However, it was deduced that combining light-based thermally regulated genetic expression with disease-associated signaling pathways is more clinically meaningful.
According to the team’s understanding, no research group has documented a technique for reducing breast tumor development through light-based thermal stimulation of TRAIL gene expression with the help of conjugated polymer-based nanoparticles.
In the current research, the team devised a novel technique to eliminate pharmacokinetic inadequacy and TRAIL resistance, Using near infrared-absorbing conjugated polymer-based nanoparticles.
Key Findings of the Study
The team effectively designed near-infrared light-absorbing conjugated polymer-based nanoparticles with dual functionalities to regulate and selectively trigger TRAIL-regulated apoptotic signaling.
The conjugated polymer-based nanoparticles demonstrated significant near-infrared light-based thermal conversion capacity as well as good biological compatibility. The lipid coatings utilized for the conjugated polymer-based nanoparticles were DPPC and DSPE-PEG-PEI, which were subsequently electrostatically linked to therapeutic p-DNA.
The team noted that the transition temperature associated with DPPC and the responsive temperature associated with the HSP-70 promoter in the conjugated polymer-based nanoparticles were both 41°C. This similarity in temperatures allowed conjugated polymer-based nanoparticles to regulate drug release and gene expression concurrently under near-infrared light irradiation.
The conjugated polymer-based nanoparticles converted light into thermal energy and raised the temperature significantly, subsequently triggering an HSP-70 promoter to commence the expression and transcription of TRAIL genes. This resulted in the TRAIL-regulated apoptotic signaling being activated.
Concurrently, the conjugated polymer-based nanoparticles produced W-7, which facilitated the fragmentation of TRAIL-associated caspase-8 and increased cancer cell apoptosis.
The team concluded that conjugated polymer-based nanoparticles/W-7/p-TRAIL might accumulate at tumor locations in vivo and have outstanding anticancer effectiveness and biosafety. As a result, the study offered a viable therapeutic and diagnostic method for remote modulation of TRAIL-regulated apoptotic signaling to increase TRAIL-resistant cancerous cell apoptosis.
News
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]















