Artificial Spin Glass Containing Nanomagnets, Likely To Be a Breakthrough in AI
Artificially manufacturing a rare kind of substance known as spin glass, according to a new study, might usher in a new era in artificial intelligence by enabling algorithms to be printed as physical hardware. The peculiar features of spin glass allow a type of AI that, like the brain, can distinguish objects from incomplete images and possess the potential for low-power computing, among other things.
Our work accomplished the first experimental realization of an artificial spin glass consisting of nanomagnets arranged to replicate a neural network. Our paper lays the groundwork we need to use these physical systems practically.
Michael Saccone, Study Lead Author and Post-doctoral Researcher, Theoretical Physics, Los Alamos National Laboratory
The study was published in the journal Nature Physics.
Spin glasses are a mathematical approach to thinking about material structure. Saccone explained that being able to alter the interaction within these systems using electron-beam lithography for the very first time allows for the representation of a range of computing issues in spin-glass networks.
Spin-glass systems are a form of a disordered system of nanomagnets that arise from random connections and competition between two types of magnetic order in the material. They are found at the junction of engineered materials and computation.
When their temperature decreases, they exhibit “frustration,” which means they do not settle into an evenly ordered arrangement, and they have different thermodynamic and dynamic properties that can be used in computer applications.
Theoretical models describing spin glasses are broadly used in other complex systems, such as those describing brain function, error-correcting codes, or stock-market dynamics. This wide interest in spin glasses provides strong motivation to generate an artificial spin glass.
Michael Saccone, Study Lead Author and Post-doctoral Researcher, Theoretical Physics, Los Alamos National Laboratory
The study team integrated theoretical and experimental investigation, to build and analyze the artificial spin glass as a proof-of-principle Hopfield neural network, which mathematically simulates associative memory helping regulate the instability of the artificial spin systems.
Both spin glass and Hopfield networks have evolved in a symbiotic relationship, with one field feeding the other. Associative memory connects two or more memory patterns associated with an item, whether in a Hopfield network or other types of neural networks.
The network can recollect the entire face if only one memory is activated — for example, by getting a partial image of a face as input. Associative memory, unlike more standard algorithms, does not demand a completely identical circumstance to detect memory.
These networks’ memories are similar to the ground states of a spin system, and they are less affected by noise than other neural networks.
Saccone and his team’s research verified that the material was a spin glass, providing proof that will enable them to explain the system’s attributes and how it processes data. Spin glass AI algorithms would be “messier” than standard algorithms, but more versatile for particular AI applications, according to Saccone.
The research was funded by the Laboratory Directed Research and Development program at Los Alamos National Laboratory.
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]