Researchers at the Francis Crick Institute and UCL have analyzed ancient DNA from Borrelia recurrentis, a type of bacteria that causes relapsing fever, pinpointing when it evolved to spread through lice rather than ticks, and how it gained and lost genes in the process.
This transition may have coincided with changes in human lifestyles, like living closer together and the beginning of the wool trade.
Borrelia recurrentis bacteria cause relapsing fever, an illness with many recurring episodes of fever, which is typically found today in areas with poor sanitation or overcrowding, such as refugee camps. It is a distant cousin of the bacteria that today cause Lyme disease.
Historical records in Britain have referred to periods of a ‘sweating sickness’ or ‘epidemic fever’ which may have been caused by B. recurrentis, but limited data means the likely cause of these outbreaks remains unknown.
Only three known species of bacteria, including B. recurrentis, have transitioned from being carried primarily by ticks to lice, changing the potential severity of the disease. Until now it was unknown when B. recurrentis made the jump from ticks to lice and what impact this had on disease transmission and severity in humans.
In research published today in Science, the scientists sequenced the whole genome from four samples of B. recurrentis. Ranging from 2,300 to 600 years ago, their samples include the oldest B. recurrentis genome to date. These ancient samples were obtained from the skeletons of people who were infected hundreds of years ago. The DNA is a shadow of the bacteria that once circulated in their blood and has been captured in bones and teeth.
The individuals’ teeth contained traces of B. recurrentis DNA. Two samples had relatively high amounts of the pathogen, suggesting these individuals may have died from a severe, acute infection, or that the DNA was particularly well preserved.
Becoming adapted to the human louse
The researchers looked at differences in the ancient genomes and modern-day B. recurrentis to map how the bacteria has changed over time, finding that the species likely diverged from its nearest tick-borne cousin, B. duttonii, about 6,000 to 4,000 years ago.
The perfect conditions
Based on these ancient and modern genomes, the divergence from the bacteria’s tick-borne ancestor happened during the transition from the Neolithic period to the Early Bronze Age. This was a time of change in human lifestyles, as people began to domesticate animals and live in more dense settlements. This may have helped B. recurrentis spread from person to person more easily.
The researchers also raise the possibility that the development of sheep farming for wool at this time may have given an advantage to louse-borne pathogens, as wool has better conditions for lice to lay eggs.
They conclude that the evolution of B. recurrentis highlights that a combination of genetic and environmental changes can help pathogens spread and infect populations more easily.
Louse-borne relapsing fever is a neglected disease with limited modern genomes, making it difficult to study its diversity. Adding four ancient B. recurrentis genomes to the mix has allowed us to create an evolutionary time series and shed light on how the genetics of the bacteria have changed over time. Although there’s a trend towards genome decay as it adapted to the human louse vector, we’ve shown that the evolution of B. recurrentis was dynamic until about 1,000 years ago, when it looks similar to present-day genomes.”
Pooja Swali, Research Fellow at UCL, former Crick PhD student and first author
Pontus Skoglund, Group Leader of the Ancient Genomics Laboratory at the Crick, and co-senior author, said: “Ancient DNA can enhance our understanding of significant but understudied diseases like relapsing fever. Understanding how bacteria such as B. recurrentis became more severe in the past may help us understand how diseases could change in the future. The time points we’ve identified suggest that changes in human societies such as new clothing material or living in larger groups may have allowed B. recurrentis to jump vectors and become more lethal, an example of how pathogens and humans have co-evolved.”
Lucy van Dorp, Group Leader at UCL, and co-senior author, said: “Genetic analysis of these infections in ancient humans has allowed us to directly track how B. recurrentis has juggled loss and gain of genes during its evolution. Its ability to spread and cause disease appears to be context-dependent, with ancient DNA allowing us to speculate on the important role of past human interactions and behaviour in creating conditions conducive to disease spread. More samples will help us to narrow down the events which led to this tick-to-louse transition and the genetic mechanisms which have helped the bacteria thrive using either vector.”
Swali, P., et al. (2025) Ancient Borrelia genomes document the evolutionary history of louse-borne relapsing fever. Science. doi.org/10.1126/science.adr2147.

News
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]