Researchers in Germany and Japan have been able to increase the diffusion of magnetic whirls, so-called skyrmions, by a factor of ten.
In today’s world, our lives are unimaginable without computers. Up until now, these devices process information using primarily electrons as charge carriers, with the components themselves heating up significantly in the process. Active cooling is thus necessary, which comes with high energy costs. Spintronics aims to solve this problem: Instead of utilizing the electron flow for information processing, it relies on their spin or their intrinsic angular momentum. This approach is expected to have a positive impact on the size, speed, and sustainability of computers or specific components.
Magnetic Whirls Store and Process Information
Science often does not simply consider the spin of an individual electron, but rather magnetic whirls composed of numerous spins. These whirls called skyrmions emerge in magnetic metallic thin layers and can be considered as two-dimensional quasi-particles. On the one hand, the whirls can be deliberately moved by applying a small electric current to the thin layers; on the other hand, they move randomly and extremely efficiently due to diffusion. The feasibility of creating a functional computer based on skyrmions was demonstrated by a team of researchers from Johannes Gutenberg University Mainz (JGU), led by Professor Dr. Mathias Kläui, using an initial prototype. This prototype consisted of thin, stacked metallic layers, some only a few atomic layers thick.
Two skyrmions antiferromagnetically coupled: The spin in the center and the outside spins are antiparallel to each other. Credit: ill./©: Takaaki Dohi / Tohoku University
Boosting Energy Efficiency
In collaboration with the University of Konstanz and Tohoku University in Japan, researchers of Mainz University have now achieved another step towards spin-based, unconventional computing: They were able to increase the diffusion of skyrmions by a factor of about ten using synthetic antiferromagnets, which drastically reduces the energy consumption and increases the speed of such a potential computer. “The reduction of energy usage in electronic devices is one of the biggest challenges in fundamental research,” emphasized Professor Dr. Ulrich Nowak, who led the theoretical part of the project in Konstanz.
The Power of Antiferromagnets
But what is an antiferromagnet and what is it used for? Normal ferromagnets consist of many small spins, all coupled together to point in the same direction, thereby creating a large magnetic moment. In antiferromagnets, the spins are aligned alternatingly antiparallel, i.e., a spin and its direct neighbors point in the opposite direction. As a result, there is no net magnetic moment, even though the spins remain antiferromagnetically well-ordered. Antiferromagnets have significant advantages, such as three magnitudes of faster dynamics for switching, better stability, and the potential for higher storage densities. These properties are intensively studied in multiple research projects.
In order to understand why these antiferromagnets are useful in this context, we need to delve a bit deeper. When skyrmions move very rapidly, an additional force component arises in ferromagnetic layers perpendicular to the direction of motion. This force component pushes the skyrmions off course. Consequently, they end up colliding with the wall, getting stuck, and obstructing the path for others. At higher speeds, they can even be destroyed. However, it is theoretically known that this effect either does not occur in antiferromagnets or it occurs to a very limited extent.
Advancements in Synthetic Antiferromagnets
To create such an antiferromagnet artificially, the researchers coupled two of their ferromagnetic layers in a way that the magnetization in the two layers is precisely aligned in opposite directions, canceling out their magnetic fields. This provides two advantages: They reduce the force pushing the whirls off their path and thus increase the diffusion. “With this, we have created a synthetic antiferromagnet in which the diffusion of skyrmions is approximately ten times higher than in the individual layers,” said Klaus Raab, a physicist at JGU. “This diffusion can be implemented to realize stochastic computing – a form of computing where stochastic processes like the random motion of particles are utilized.”
The team of researchers investigated the effects of the compensation of the magnetic layers in addition to the influence of temperature and size of the skyrmions on diffusion and consequently on the motion of the skyrmions, both experimentally and through simulations. Intricate connections have been found: As temperature rises, the skyrmions have more energy to diffuse faster. The heat also reduces the size of the skyrmions, which positively affects their mobility. The compensation of the vertical force component also has a positive impact on diffusion. All these effects are difficult to disentangle from each other. “The increasing diffusion seems to be attributable not only to the pure compensation of the magnetic fields but also to the associated reduction in the size of the skyrmions,” summarized Raab.
Professor Mathias Kläui, who led the study, is pleased with the fruitful collaboration with Tohoku University: “We have been working with this leading Japanese university for about ten years and there are even joint study programs. With the support of the German Academic Exchange Service – the DAAD – and other research funders, over a dozen students from Mainz University have already participated in exchanges with Tohoku University. I am delighted that this collaborative effort has been made possible through this cooperation.”
The research results have been published recently in the journal Nature Communications.
Reference: “Enhanced thermally-activated skyrmion diffusion with tunable effective gyrotropic force” by Takaaki Dohi, Markus Weißenhofer, Nico Kerber, Fabian Kammerbauer, Yuqing Ge, Klaus Raab, Jakub Zázvorka, Maria-Andromachi Syskaki, Aga Shahee, Moritz Ruhwedel, Tobias Böttcher, Philipp Pirro, Gerhard Jakob, Ulrich Nowak and Mathias Kläui, 11 September 2023, Nature Communications.
DOI: 10.1038/s41467-023-40720-0

News
The Surprising Origin of a Deadly Hospital Infection
C. diff might not originate from external transmission but rather from within the infected patient themselves. Hospital staff dedicate significant effort to safeguard patients from infections during their hospital stay. Through practices ranging from [...]
Google AI breakthrough – huge step in finding genes that cause diseases
Google says it has made a significant step in identifying disease-causing genes, which could help spot rare genetic disorders. A new model named AlphaMissense is able to confidently classify 89 per cent of all [...]
New Study: Everyday Pleasures Can Boost Cognitive Performance
MINDWATCH study reveals cognitive peaks with everyday pleasures. Listening to music and drinking coffee are the sorts of everyday pleasures that can impact a person’s brain activity in ways that improve cognitive performance, including [...]
Moderna reveals new highly targeted COVID-19 vaccine mRNA-1283
Moderna has developed a new and improved version of its COVID-19 vaccine. The unique formulation (mRNA-1283) reduces the vaccine's content from the full-length SARS-CoV-2 spike protein to a narrowly focused encoding of just two [...]
New nanotech weapon takes aim at hard-to-treat breast cancer
Breast cancer in its various forms affects more than 250,000 Americans a year. One particularly aggressive and hard-to-treat type is triple-negative breast cancer (TNBC), which lacks specific receptors targeted by existing treatments. The rapid [...]
Scientists upcycle plastics into liquids that can store hydrogen energy
Scientists from Nanyang Technological University, Singapore (NTU Singapore) have created a process that can upcycle most plastics into chemical ingredients useful for energy storage, using light-emitting diodes (LEDs) and a commercially available catalyst, all [...]
Yale Scientists Uncover How the Immune System Can Alter Our Behavior
The mere scent of seafood can severely sicken those allergic to it — and therefore they are more likely to avoid it. Similarly, individuals who experience food poisoning from a specific dish tend to [...]
Whirlwind Tech – The Future of Energy-Efficient Spintronics Computing
Researchers in Germany and Japan have been able to increase the diffusion of magnetic whirls, so-called skyrmions, by a factor of ten. In today’s world, our lives are unimaginable without computers. Up until now, [...]
Omicron’s Silver Lining: Significantly Lower Risk of Long COVID
Omicron infections have a lower risk of long COVID than earlier variants, according to a study analyzing data from 11,000 participants. The risk of developing long COVID is significantly lower following an infection with [...]
The Hidden Mechanism Connecting Diabetes and Cancer
Researchers have discovered that insulin resistance, typically linked with type 2 diabetes, is also present in cancer patients and can accelerate the spread of the disease. In the 1920s, scientists found that the urine [...]
Scientists Unveil Urea’s Secret Role in the Origin of Life
Scientists from ETH Zurich and the University of Geneva have developed a new technique that allows them to observe chemical reactions taking place in liquids at extremely high temporal resolution. This innovation enables them to track how molecules [...]
Viagra Lowers Alzheimer’s Risk by Almost 70%, Early Study Finds
Research published recently suggests that Pfizer’s erectile dysfunction drug Viagra can decrease the risk of developing Alzheimer’s disease by up to 69 percent. The research, which was published in Nature, found that the medication has [...]
Future of Medical Imaging: Advanced AI Can Tell Your True Age by Looking at Your Chest
An AI-powered model utilizes chest X-rays to help develop biomarkers for aging. What if determining “your age” was based on your chest rather than your face? Scientists from Osaka Metropolitan University have crafted an [...]
Ultra-sensitive biosensors detect cancer in a blood test
Cancer biomarkers circulating in body fluids can be used for diagnosis and treatment monitoring. However, current detection technology lacks the required sensitivity, limiting biomarker use in clinical applications. Colorectal cancer is the second most [...]
Viruses cause 200+ diseases. This one drug may be able to treat them all.
By taking aim at a process common across many viruses, the drug could one day stop any number of known viruses — and new ones. t’s about as audacious an idea as you can [...]
Scientists Identify Potential Treatment for Rare and Devastating Lung Disease
The findings could lead to a cure for LAM. Researchers from the University of Cincinnati may have identified a potential treatment for lymphangioleiomyomatosis (LAM), a rare lung condition resembling cancer found predominantly in women of reproductive [...]