Nanoplastics are abundant in the environment and substantially impact public health. However, existing knowledge on the effects of nanoplastics on terrestrial plants is inconsistent. The absence of systematic techniques for assessing these impacts restricts the capacity to generalize from recent findings and creates significant procedural barriers.
A recent study published in the journal ACS Nano tackles this problem by doing a meta-analysis to determine the overall severity of nanoplastic effects on terrestrial plants. The researchers also developed a machine-learning technique for predicting the harmful impacts and driving features of nanoplastic toxicity.
Nanoplastics: Overview and Environmental Impacts
Since the 1950s, around 8.3 billion tons of plastics have been generated, with over 367 million tons generated in 2020 alone. In addition to huge visible trash, plastics in the ecosystem degrade into microplastics and nanoplastics, with distinct environmental impacts.
Nanoplastics differ from microplastics in size, quantity, environmental reactivity, and absorption, and they constitute a bigger, yet unfathomable, danger to the ecosystem and public health.
Soil is a major sink for nanoplastics, and plastic pollution on land exceeds that in the water by several orders of magnitude. However, the majority of studies concentrate on nanoplastics in aquatic settings. Nanoplastics reach soil through the disintegration of bigger plastic-containing objects, sewage-derived landfills, atmospheric exposure, and sewage irrigation.
Despite current scientific attempts to analyze the chemical fingerprints of nanoplastics, the quantity and mass proportion of nanoplastics in soils remain unknown. Moreover, the bulk of earlier nanoplastic research focused only on the negative impacts of nanoplastics on soil animals such as invertebrates, reptiles, and mammals, with few studies concentrating on terrestrial plants.
Effects of Nanoplastics on Terrestrial Plants
Terrestrial plants are those that grow on land. Terrestrial plants are separated into two parts: the root system and the shoot system. The root system is made up of roots that take nutrients from the ground and store them. On the other hand, the shoot system is made up of stems and leaves that transport chemicals up and down the plant.
Terrestrial plants have an important role in the functioning of the ecosystem and in delivering crucial ecological services such as food and nutrition security.
Some data on nanoplastics has already been generated from individual empirical studies. This data includes physicochemical parameters of nanoplastics such as size and interface chemistry, plant factors like species and developmental stages, and experimental settings such as exposure environment and duration.
However, the results from individual studies are often conflicting, leading to uncertainty and heterogeneity in the corpus of nanotoxicology publications. Therefore, integrating quantitative and qualitative data from a wide range of publications for risk analysis and evidence-based regulatory precautions is a crucial task.
What Did the Researchers Do in This Study?
The primary goal of this research was to fill this information gap by combining a meta-analysis with a machine-learning technique from the complete corpus of nanoplastic publications. The researchers hypothesized that a systematic study could accelerate the growth of nanoplastic risk analysis and create successful regulatory policies in the future.
Meta-analysis can measure the amount (rather than just the presence) of nanoplastics’ effects on terrestrial plants and discover causes of variation in statistical data. The machine-learning technique enables the creation of quantitative forecasting models based on complex algorithms.
The combined meta-analysis and machine learning methodologies have been employed in a variety of industries, including nanotechnology, agriculture, and healthcare. These approaches can aid in discovering previously unknown correlations between quantum dot characteristics, cytotoxicity, and reliable signature genes, improving diagnostic and treatment tactics.
Key Developments of the Research
The integrated meta-analysis and machine learning approaches were utilized effectively to compile and classify nanoplastic cytotoxic effects from nanotoxicology research. The researchers reported that nanoplastics have profound impacts on terrestrial plants. Still, the magnitudes and variety of these effects are dependent on toxicity measures, plant features, nanoplastic properties, and exposure settings.
These findings show that the dangers of nanoplastics depend on various responses from molecular to ecological sizes. These responses are based on the spatial and functional intricacies of nanoplastics and, as such, are unique to both plastic properties and environmental circumstances.
In this regard, future research should describe and reflect on the key driving factors of nanoplastic effects on terrestrial plants.
Based on the outcomes of this research, it is reasonable to conclude that the combined meta-analysis and machine learning strategy can pave the way for a universal mitigation solution by optimizing key driving factors of nanoplastic toxicity.

News
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]