Innovative research into DNA nanotechnology has been submitted to the journal, Nanomedicine: Nanotechnology, Biology and Medicine, comprising intelligent aptamer-incorporated DNA nanonetwork (Apt-Nnes). This novel technology can be used for imaging cancers as well as for increased drug delivery of chemotherapeutics.
The Need for DNA Nanotechnology
Nanoscale materials, which include materials that are within the nanoscale of 1 and 100 nm in size, have gained traction with the integration of nanotechnology into biomedical research.
Nanomaterials such as nanoparticles and nanocarriers have proven to have great potential when delivering drugs to target sites as they allow increased precision of drug release with a high concentration in the target areas. This also reduces systemic effects including toxicity, which is a major concern for chemotherapy drugs used for cancer therapeutics. The biodistribution of these drugs is non-specific and can cause secondary medical issues such as the elimination of healthy cells and tissue, and even affect organ functioning.
While there have been nanomaterials developed for this application such as liposomes and nanoparticles, these can also be associated with obstacles and limitations including the requirement of extensive surface functionalization to aid targetability as well compatibility with the immune system.
These drawbacks have increased research into DNA nanotechnology. This sector has illustrated benefits such as higher suitability for use in vivo as well as a high level of programmability. These advantages have made DNA nanotechnologies like aptamers potentially more suitable for use in cancer diagnostics and therapeutics such as bioimaging, biosensors and drug carriers.
Aptamers
Aptamers can be described as being short single-stranded oligonucleotides, which are usually 20-60 nucleotides long, with the ability to bind to target molecules with a high level of specificity and affinity.
These DNA molecules can bind a wide range of targets such as simple inorganic molecules, large proteins, and cells, as well as being cheaper nucleotide analogues of antibodies. This can enable aptamers to be used as a more cost-effective alternative, with the added benefit of being easily produced and non-toxic.
Applications of aptamer within DNA nanotechnology have led to innovative research into its suitability for cancer research and therapy.
Innovative Research
The pre-print article submitted to the journal Nanomedicine: Nanotechnology, Biology and Medicine has undertaken research to develop a simplistic approach for constructing a versatile aptamer-incorporated DNA nanonetwork (Apt-Nnes) for carrying and delivering drugs with increased targetability.
This research has been developed for the application of carrying chemotherapy drugs such as doxorubicin (Dox), which can be loaded onto the Apt-Nnes carrier. This drug delivery carrier has a high cargo loading capacity as well as being suitable for biological systems without causing immunity issues or resulting in toxicity.
Additionally, the targetability of this DNA technology was tested for its potential use in cancer therapeutics by evaluating its specificity for the protein tyrosine kinase 7, which is overexpressed in T-cell acute lymphoblastic leukemia. The results of this research consisted of finding the binding affinity of this drug delivery carrier was heavily enhanced through the use of multivalent aptamers. Additionally, the structure itself was suitable for its purpose as its structural integrity was maintained in fetal bovine serum for eight hours.
The small size of this drug delivery carrier enables natural interaction with cancer cells, and this can allow its cancer-specific receptors to detect and enter cancer cells before releasing the chemotherapy drug with a high concentration within a localized area. Cytotoxicity within a localized tumor site using this DNA nanotechnology allow the preservation of heathy cells and tissue within the patient and this lack of systemic toxicity can allow patients to experience fewer adverse effects.
Future Outlook
Utilizing aptamers, this nano-based method can also enable a more patient-centered treatment approach, which can include potentially fewer chemotherapy treatment sessions, especially if sustained drug release can be enabled. The use of smaller doses of the chemotherapy drug is also a possibility with the drug being released in the target area, a larger dose is no longer required to ensure the site is reached. This can be beneficial for health care systems as the requirement of the overall drug treatment dose per patient is reduced and there this can be cheaper for the hospital, allowing the treatment of a larger number of patients.
The quality of life of these patients that are able to experience reduced toxicity is also a benefit of this novel approach and with further research, this research, while in its infancy, may be able to enter clinical practice and increase patient care.

News
Scientists Just Captured the Stunning Process That Shapes Chromosomes
Scientists at EMBL have captured how human chromosomes fold into their signature rod shape during cell division, using a groundbreaking method called LoopTrace. By observing overlapping DNA loops forming in high resolution, they revealed that large [...]
Bird Flu Virus Is Mutating Fast – Scientists Say Our Vaccines May Not Be Enough
H5N1 influenza is evolving rapidly, weakening the effectiveness of existing antibodies and increasing its potential threat to humans. Scientists at UNC Charlotte and MIT used high-performance computational modeling to analyze thousands of viral protein-antibody interactions, revealing [...]
Revolutionary Cancer Vaccine Targets All Solid Tumors
The method triggers immune responses that inhibit melanoma, triple-negative breast cancer, lung carcinoma, and ovarian cancer. Cancer treatment vaccines have been in development since 2010, when the first was approved for prostate cancer, followed [...]
Scientists Uncover Hidden Protein Driving Autoimmune Attacks
Scientists have uncovered a critical piece of the puzzle in autoimmune diseases: a protein that helps release immune response molecules. By studying an ultra-rare condition, researchers identified ArfGAP2 as a key player in immune [...]
Mediterranean neutrino observatory sets new limits on quantum gravity
Quantum gravity is the missing link between general relativity and quantum mechanics, the yet-to-be-discovered key to a unified theory capable of explaining both the infinitely large and the infinitely small. The solution to this [...]
Challenging Previous Beliefs: Japanese Scientists Discover Hidden Protector of Heart
A Japanese research team found that the oxidized form of glutathione (GSSG) may protect heart tissue by modifying a key protein, potentially offering a novel therapeutic approach for ischemic heart failure. A new study [...]
Millions May Have Long COVID – So Why Can’t They Get Diagnosed?
Millions of people in England may be living with Long Covid without even realizing it. A large-scale analysis found that nearly 10% suspect they might have the condition but remain uncertain, often due to [...]
Researchers Reveal What Happens to Your Brain When You Don’t Get Enough Sleep
What if poor sleep was doing more than just making you tired? Researchers have discovered that disrupted sleep in older adults interferes with the brain’s ability to clean out waste, leading to memory problems [...]
How to prevent chronic inflammation from zombie-like cells that accumulate with age
In humans and other multicellular organisms, cells multiply. This defining feature allows embryos to grow into adulthood, and enables the healing of the many bumps, bruises and scrapes along the way. Certain factors can [...]
Breakthrough for long Covid patients who lost sense of smell
A breakthrough nasal surgery has restored the sense of smell for a dozen long Covid patients. Experts at University College London Hospitals NHS Foundation Trust successfully employed a technique typically used for correcting blocked nasal passages, [...]
Scientists Invent Plastic That Can Dissolve In Seawater In Just A Few Hours
Plastic waste and pollution in the sea have been among the most serious environmental problems for decades, causing immense damage to marine life and ecosystems. However, a breakthrough discovery may offer a game-changing solution. [...]
Muscles from the 3D printer
Swiss researchers have developed a method for printing artificial muscles out of silicone. In the future, these could be used on both humans and robots. Swiss researchers have succeeded in printing artificial muscles out [...]
Beneficial genetic changes observed in regular blood donors
Researchers at the Francis Crick Institute have identified genetic changes in blood stem cells from frequent blood donors that support the production of new, non-cancerous cells. Understanding the differences in the mutations that accumulate [...]
Shocking Amounts of Microplastics in the Brain – It Could Be Increasing Our Risk of Dementia
The brain has higher concentrations of plastic particles compared to other organs, with increased levels found in dementia patients. In a comprehensive commentary published in Brain Medicine, researchers highlight alarming new evidence of microplastic accumulation [...]
Baffling Scientists for Centuries: New Study Unravels Mystery of Static Electricity
ISTA physicists demonstrate that contact electrification depends on the contact history of materials. For centuries, static electricity has intrigued and perplexed scientists. Now, researchers from the Waitukaitis group at the Institute of Science and [...]
Tumor “Stickiness” – Scientists Develop Potential New Way To Predict Cancer’s Spread
UC San Diego researchers have developed a device that predicts breast cancer aggressiveness by measuring tumor cell adhesion. Weakly adherent cells indicate a higher risk of metastasis, especially in early-stage DCIS. This innovation could [...]