Researchers have created a new type of tiny 3D-printed robot that moves by harnessing vibration from piezoelectric actuators, ultrasound sources or even tiny speakers. Swarms of these “micro-bristle-bots” might work together to sense environmental changes, move materials – or perhaps one day repair injuries inside the human body.
The prototype robots respond to different vibration frequencies depending on their configurations, allowing researchers to control individual bots by adjusting the vibration. Approximately two millimeters long – about the size of the world’s smallest ant – the bots can cover four times their own length in a second despite the physical limitations of their small size.
“We are working to make the technology robust, and we have a lot of potential applications in mind,” said Azadeh Ansari, an assistant professor in the School of Electrical and Computer Engineering at the Georgia Institute of Technology. “We are working at the intersection of mechanics, electronics, biology and physics. It’s a very rich area and there’s a lot of room for multidisciplinary concepts.”
A paper describing the micro-bristle-bots has been accepted for publication in the Journal of Micromechanics and Microengineering (“A 5mg micro-bristle-bot fabricated by two-photon lithography”). The research was supported by a seed grant from Georgia Tech’s Institute for Electronics and Nanotechnology. In addition to Ansari, the research team includes George W. Woodruff School of Mechanical Engineering Associate Professor Jun Ueda and graduate students DeaGyu Kim and Zhijian (Chris) Hao.

Image Credit:   Allison Carter, Georgia Tech


News This Week

Medical nanotechnology research for COVID-19

Notwithstanding the wishful thinking of certain irresponsible and incompetent public figures, the only options to control and deal with the spread of the Severe Acute Respiratory Syndrome Virus 2 (SARS-CoV-2) are fast, cheap, reliable, [...]