Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.
Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE’s Argonne National Laboratory, have contributed to a recently published Nature Communications paper (“Uniaxial transition dipole moments in semiconductor quantum rings caused by broken rotational symmetry”) that reports the cause behind a key quantum property of donut-like nanoparticles called “semiconductor quantum rings.” This property may find application in quantum information storage, communication, and computing in future technologies.
“If you illuminate a two-dimensional photon emitter with a laser, you expect them to emit light along two axes, but what you expect is not necessarily what you get. To our surprise, these two-dimensional rings can emit light along one axis.” — Xuedan Ma, assistant scientist, Center for Nanoscale Materials
In this project, the CNM researchers collaborated with colleagues from the University of Chicago, Ludwig Maximilian University of Munich, University of Ottawa and National Research Council in Canada.

Image Credit:  Argonne National Laboratory

News This Week

Ethics in Nanomedicine: Key Issues and Principles

Nanomedicine, a branch of nanotechnology, is revolutionizing healthcare by enabling the manipulation of materials at the nanoscale to diagnose, treat, and prevent diseases. Unlike traditional treatments, nanoparticles (NPs) are highly precise in targeting diseased [...]