Nanomedicines may offer clinicians a way to deliver precise, targeted therapy directly to tumors without damaging surrounding tissue. Yet, progress in the development of new drugs that treat cancer at the nanoparticle level has been frustratingly slow. Good results in animal models haven’t necessarily translated to clinical success in humans, in part because of low delivery efficiency of nanoparticles to tumors.
Now, with the support of a new $1.3 million grant from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, researchers led by Zhoumeng Lin, B.Med., Ph.D., DABT, CPH, are building a tool that can offer drug researchers insight into how well a new nanoparticle-based cancer therapy will work, even before a drug enters animal testing.
This project will provide a tangible tool to improve the design of nanoparticles to accelerate clinical translation of cancer nanomedicines from animals to humans in order to benefit cancer patients.
Zhoumeng Lin, Associate Professor, Department of Environmental and Global Health, College of Public Health and Health Professions
Another anticipated benefit is the reduction or elimination of animal experimentation for new nanomedicines that are determined to have low delivery efficiency, Lin added.
Lin joined the university this summer from Kansas State University. He is the first faculty member in PHHP hired under UF’s artificial intelligence initiative, which seeks to make the university a national leader in AI. Lin’s expertise is in the development and application of computational technologies to address research questions related to nanomedicine, animal-derived food safety assessment, and environmental chemical risk assessment.
To build their predictive model of nanoparticle cancer therapies, researchers will use an AI technology known as artificial neural network and train it with hundreds of datasets from physiologically-based pharmacokinetic (PBPK) computer models. PBPK models describe the absorption, distribution, metabolism and excretion of a drug in the body using mathematical equations, and they can be used to predict the concentration of a drug following different therapies.
In this project, we will integrate PBPK modeling with AI approaches to build an AI-assisted smart model that can predict delivery efficiency of nanoparticles to tumors,” Lin said. “This approach is new in the fields of nanomedicine, pharmacology and toxicology.
Zhoumeng Lin, Associate Professor, Department of Environmental and Global Health, College of Public Health and Health Professions
Next, Lin’s co-investigator, Santosh Aryal, Ph.D., an associate professor in the department of pharmaceutical sciences and health outcomes at the University of Texas at Tyler, will conduct pharmacokinetic lab experiments using nanoparticles. The data from these experiments will be used to validate and/or optimize the new AI-PBPK model.
“We are excited about this collaboration and hope this will further open up novel avenues in cancer nanomedicine development,” Aryal said.
For the project’s final outcome, the team will convert the smart model into a publicly available web-based interface for use by nanomedicine researchers.
“This project addresses a crucial problem of low delivery efficiency of cancer nanomedicines, which has been a critical barrier to progress over the last 20 years,” Lin said. “This will greatly improve our fundamental understanding of the key factors of nanoparticle tumor delivery.”

News
A potential milestone in cancer therapy
Researchers from the University of Bern, Inselspital, University Hospital Bern, and the University of Connecticut have made a significant breakthrough in the fight against cancer. They identified a previously unknown weak point of prostate [...]
Cardiovascular Crystal Ball: New Tool Predicts Future Heart Disease Risk
Faculty members at the UM School of Medicine have created a cutting-edge tool that enables the early identification and assessment of risks in vulnerable patients. Heart disease, being the leading cause of death globally, [...]
Scientists analyze a single atom with X-rays for the first time
In the most powerful X-ray facilities in the world, scientists can analyze samples so small they contain only 10,000 atoms. Smaller sizes have proved exceedingly difficult to achieve, but a multi-institutional team has scaled [...]
AI Demonstrates Superior Performance in Predicting Breast Cancer
AI algorithms outperformed traditional clinical risk models in a large-scale study, predicting five-year breast cancer risk more accurately. These models use mammograms as the single data source, offering potential advantages in individualizing patient care [...]
Stanford Medicine Reveals: Tiny DNA Circles Defying Genetic Laws Drive Cancer Formation
Tiny circles of DNA harbor cancer-associated oncogenes and immunomodulatory genes promoting cancer development. They arise during the transformation from pre-cancer to cancer, say Stanford Medicine-led team. Tiny circles of DNA that defy the accepted laws of [...]
Death to Blood Cancer Cells: New Drug Combination Could Revive the Power of Leading Treatment
Future clinical trials will be conducted to investigate whether the combination of chloroquine and venetoclax can prevent disease recurrence. Although new drugs have been developed to induce cancer cell death in individuals with acute [...]
Illuminating Science: X-Rays Visualize How One of Nature’s Strongest Bonds Breaks
Scientists have deciphered how an activated catalyst breaks down the strong carbon-hydrogen bonds in potent greenhouse gas methane, according to a study published in Science. Using advanced X-ray technology and quantum-chemical calculations, they tracked the [...]
Using magnetic nanoparticles as a rapid test for sepsis
Qun Ren, an Empa researcher, and her team are currently developing a diagnostic procedure that can rapidly detect life-threatening blood poisoning caused by staphylococcus bacteria. Staphylococcal sepsis is fatal in up to 40% of [...]
Team develops nanoparticles to deliver brain cancer treatment
University of Queensland researchers have developed a nanoparticle to take a chemotherapy drug into fast growing, aggressive brain tumors. Research team lead Dr. Taskeen Janjua from UQ's School of Pharmacy said the new silica [...]
Tumor Avatars – A New Approach to Personalized Cancer Treatment
A team from the University of Geneva (UNIGE) has devised a novel method for customizing treatments by testing them on artificial tumors. Determining the optimal treatment for colon cancer can be challenging as each [...]
STING Like a Bee: MIT’s Revolutionary Approach to Cancer Immunotherapy
A cancer vaccine combining checkpoint blockade therapy and a STING-activating drug eliminates tumors and prevents recurrence in mice. MIT researchers have engineered a therapeutic cancer vaccine that targets the STING pathway, vital for immune response [...]
AI Battles Superbugs: Helps Find New Antibiotic Drug To Combat Drug-Resistant Infections
The machine-learning algorithm identified a compound that kills Acinetobacter baumannii, a bacterium that lurks in many hospital settings. Using an artificial intelligence algorithm, researchers at MIT and McMaster University have identified a new antibiotic that can kill a [...]
Cancer and AI – Can ChatGPT Be Trusted?
A study published in the Journal of The National Cancer Institute Cancer Spectrum delved into the increasing use of chatbots and artificial intelligence (AI) in providing cancer-related information. The researchers discovered that these digital resources accurately [...]
Breathing New Life: Oxygen Therapy Improves Heart Function in Long COVID Patients
A small trial has found that hyperbaric oxygen therapy (HBOT) may help restore proper heart function in patients with post-COVID syndrome, with participants in the HBOT group experiencing a significant increase in global longitudinal [...]
Wireless Brain-Spine Interface: A Leap Towards Reversing Paralysis
Summary: In a pioneering study, researchers designed a wireless brain-spine interface enabling a paralyzed man to walk naturally again. The ‘digital bridge’ comprises two electronic implants — one on the brain and another on the [...]
New study reveals a gel that promises to wipe out brain cancer for good
An anti-cancer gel promises to wipe out glioblastoma permanently, a feat that's never been accomplished by any drug or surgery. So what makes this gel so special? Scientists at Johns Hopkins University (JHU) have [...]