Engineered nanomaterials (ENMs) have found their applications in various technologies and consumer products. Manipulating chemicals at the nanoscale range introduces unique characteristics to these materials and makes them desirable for technological applications.
With the increasing production of ENMs, there have been adverse effects on the environment. Moreover, it is unfeasible to estimate the risks caused by ENMs each time via in vivo or in vitro experiments. To this end, in silico methods can come to the rescue to perform such evaluations.
In an article published in the journal Chemosphere, the performance of different machine learning algorithms was investigated for predicting well-defined in vivo toxicity endpoint and to identify the important features involved with in vivo nanotoxicity of Daphnia magna.
The results revealed comparable performances of all algorithms and the predictive performance exceeded approximately 0.7 for all metrices evaluated. Furthermore, artificial neural network, random forest, and k-nearest neighbor models showed a marginally better performance compared to the other algorithm models.
The variable importance analysis performed to understand the significance of input variables revealed that physicochemical properties and molecular descriptors were important within most models. On the other hand, properties related to exposure conditions gave conflicting results. Thus, the machine learning models helped generate in vivo endpoints, even with smaller datasets, demonstrating their reliability and robustness.
Role of Machine Learning in Nanotechnology
Nanotechnology has emerged as a key technology with implications agriculture, medicine, and food industries. Thus, ENMs are more appealing than their larger counterparts due to their outstanding features owing to their smaller size.
Despite their advantages, ENMs have also caused effects on the environment, impacting the health and safety of the environment, calling for environmental risk assessment associated with ENMs. However, this assessment via in vivo or in vitro testing for all fabricated nanoforms is impractical.
The challenge in risk assessment is not only due to extensive ENM production and applications but also due to the large diversity of materials. To this end, chemical modification at the nanoscale range may modulate the physicochemical properties and consequential toxicity profile of the materials.
Recent advances in machine learning offered new tools to extract new insights from large data sets and to acquire small data sets more effectively. Researchers in nanotechnology use machine learning tools to tackle challenges in many fields. Due to their compatibility with complex interactions, machine learning can help predict the toxicological effects of ENMs through large data sets.
The field of nanotoxicology lacks standardized procedures to depict common ontologies to measure ENM properties. However, the models from limited datasets can help generate the key nanotoxicological descriptors. The nanotoxicological models based on machine learning developed to date focused on endpoints like viability or cytotoxicity.
In Silico Machine Learning Tools for The Prediction of Daphnia Magna Nanotoxicity
Despite considerable efforts, various obstacles still exist for in silico modeling of nanotoxicological effects due to limited data availability and poor data curation. Hence, better agreement on data quality, experimental protocols, and availability are vital to acquiring homogenous data across different studies.
In the present work, the performance of machine learning algorithms for predicting in vivo nanotoxicity of metallic ENMs towards Daphnia magna was investigated. Various models were generated based on the sources obtained from immobilization data, which were in congruence with the principles of organization for economic co-operation and development (OECD). Furthermore, the limitations in obtaining consistent data for modeling were overcome by applying different methods of data curation.
Among the six machine learning models generated based on OECD, neural network, random forest, and k-nearest neighbor algorithms showed the highest performance, while the other models showed relatively similar performance. This indicates that machine learning is more suitable for in silico modeling of in vivo nanotoxicity than the actual algorithm. Additionally, key descriptors that modulated the toxicity of metallic ENMs towards Daphnia magna were also studied based on the generated machine learning models.
Conclusion
To summarize, machine learning algorithms were performed to predict the in vivo nanotoxicity of metallic ENMs. The collected Daphnia magna toxicity data for metallic ENMs were analyzed using six classification machine learning models based on the principles of OECD.
The results revealed that artificial neural networks, random forest, and k-nearest neighbor algorithms had the highest performances, which were in line with previous reports from the literature. On the other hand, the relative differences in other algorithm models were comparatively small. These results proved the compatibility of machine learning for in silico modeling of in vivo nanotoxicity.
Furthermore, feature importance analysis using machine learning algorithms revealed contradictory results in all the models, with physicochemical properties and molecular descriptors being significant features within models. The results demonstrated that the models with small datasets with few physicochemical properties and molecular descriptors result in machine learning models with good predictive performance.
News
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]















