Engineered nanomaterials (ENMs) have found their applications in various technologies and consumer products. Manipulating chemicals at the nanoscale range introduces unique characteristics to these materials and makes them desirable for technological applications.
With the increasing production of ENMs, there have been adverse effects on the environment. Moreover, it is unfeasible to estimate the risks caused by ENMs each time via in vivo or in vitro experiments. To this end, in silico methods can come to the rescue to perform such evaluations.
In an article published in the journal Chemosphere, the performance of different machine learning algorithms was investigated for predicting well-defined in vivo toxicity endpoint and to identify the important features involved with in vivo nanotoxicity of Daphnia magna.
The results revealed comparable performances of all algorithms and the predictive performance exceeded approximately 0.7 for all metrices evaluated. Furthermore, artificial neural network, random forest, and k-nearest neighbor models showed a marginally better performance compared to the other algorithm models.
The variable importance analysis performed to understand the significance of input variables revealed that physicochemical properties and molecular descriptors were important within most models. On the other hand, properties related to exposure conditions gave conflicting results. Thus, the machine learning models helped generate in vivo endpoints, even with smaller datasets, demonstrating their reliability and robustness.
Role of Machine Learning in Nanotechnology
Nanotechnology has emerged as a key technology with implications agriculture, medicine, and food industries. Thus, ENMs are more appealing than their larger counterparts due to their outstanding features owing to their smaller size.
Despite their advantages, ENMs have also caused effects on the environment, impacting the health and safety of the environment, calling for environmental risk assessment associated with ENMs. However, this assessment via in vivo or in vitro testing for all fabricated nanoforms is impractical.
The challenge in risk assessment is not only due to extensive ENM production and applications but also due to the large diversity of materials. To this end, chemical modification at the nanoscale range may modulate the physicochemical properties and consequential toxicity profile of the materials.
Recent advances in machine learning offered new tools to extract new insights from large data sets and to acquire small data sets more effectively. Researchers in nanotechnology use machine learning tools to tackle challenges in many fields. Due to their compatibility with complex interactions, machine learning can help predict the toxicological effects of ENMs through large data sets.
The field of nanotoxicology lacks standardized procedures to depict common ontologies to measure ENM properties. However, the models from limited datasets can help generate the key nanotoxicological descriptors. The nanotoxicological models based on machine learning developed to date focused on endpoints like viability or cytotoxicity.
In Silico Machine Learning Tools for The Prediction of Daphnia Magna Nanotoxicity
Despite considerable efforts, various obstacles still exist for in silico modeling of nanotoxicological effects due to limited data availability and poor data curation. Hence, better agreement on data quality, experimental protocols, and availability are vital to acquiring homogenous data across different studies.
In the present work, the performance of machine learning algorithms for predicting in vivo nanotoxicity of metallic ENMs towards Daphnia magna was investigated. Various models were generated based on the sources obtained from immobilization data, which were in congruence with the principles of organization for economic co-operation and development (OECD). Furthermore, the limitations in obtaining consistent data for modeling were overcome by applying different methods of data curation.
Among the six machine learning models generated based on OECD, neural network, random forest, and k-nearest neighbor algorithms showed the highest performance, while the other models showed relatively similar performance. This indicates that machine learning is more suitable for in silico modeling of in vivo nanotoxicity than the actual algorithm. Additionally, key descriptors that modulated the toxicity of metallic ENMs towards Daphnia magna were also studied based on the generated machine learning models.
Conclusion
To summarize, machine learning algorithms were performed to predict the in vivo nanotoxicity of metallic ENMs. The collected Daphnia magna toxicity data for metallic ENMs were analyzed using six classification machine learning models based on the principles of OECD.
The results revealed that artificial neural networks, random forest, and k-nearest neighbor algorithms had the highest performances, which were in line with previous reports from the literature. On the other hand, the relative differences in other algorithm models were comparatively small. These results proved the compatibility of machine learning for in silico modeling of in vivo nanotoxicity.
Furthermore, feature importance analysis using machine learning algorithms revealed contradictory results in all the models, with physicochemical properties and molecular descriptors being significant features within models. The results demonstrated that the models with small datasets with few physicochemical properties and molecular descriptors result in machine learning models with good predictive performance.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]