A new electrical stimulation therapy for spinal muscle atrophy (SMA) has shown promise in reactivating motor neurons and improving movement. In a pilot clinical trial, three patients who received spinal cord stimulation for one month experienced increased strength, reduced fatigue, and improved walking ability.
Researchers at the University of Pittsburgh School of Medicine have developed a new, drug-free, minimally invasive treatment that addresses the underlying cause of progressive neural function loss in spinal muscle atrophy (SMA), a genetic neuromuscular disease. This approach involves electrically stimulating sensory spinal nerves to gradually reactivate dormant motor neurons in the spinal cord. The treatment has been shown to improve leg muscle strength and walking ability in adults with SMA. These findings were published in Nature Medicine.
Early results from a pilot clinical trial involving three individuals with spinal muscular atrophy (SMA) indicate that one month of regular neurostimulation sessions led to improved motor neuron function, reduced fatigue, and enhanced strength and walking ability in all participants, regardless of symptom severity. This study is the first to demonstrate that a neurotechnology can be specifically designed to reverse neural circuit degeneration and restore cell function in a human neurodegenerative disease.
“To counteract neurodegeneration, we need two things – stop neuron death and restore the function of surviving neurons,” said co-corresponding author Marco Capogrosso, Ph.D., assistant professor of neurosurgery at Pitt. “In this study we proposed an approach to treat the root cause of neural dysfunction, complementing existing neuroprotective treatments with a new approach that reverses nerve cell dysfunction.”
Understanding SMA and Its Impact
SMA is a genetic neurodegenerative disease that manifests in progressive death and functional decline of motor neurons — nerve cells that control movement by transmitting signals from the brain and the spinal cord to the muscles. Over time, the loss of motor neurons causes gradual muscle weakness, and leads to a variety of motor deficits, including for the participants in this trial, difficulty in walking, climbing stairs, and standing up from chairs.
While there is no cure for SMA, several promising neuroprotective treatments have become available in the last decade. These include gene replacement therapies and medications, both of which stimulate the production of motoneuron-supporting proteins that prevent neuronal death and that slow down – though do not reverse – disease progression.
Studies show that movement deficits in SMA emerge before widespread motoneuron death, suggesting that underlying dysfunction in spinal nerve circuitry may contribute to disease onset and symptom development. According to earlier research on animal models of SMA by study co-author George Mentis, Ph.D., at Columbia University, surviving motor neurons receive fewer stimulation inputs from sensory nerves – fibers that return the information from skin and muscles back to the central nervous system. Compensating for this deficit in neural feedback could, therefore, improve communication between the nervous system and the muscles, aid muscle movement, and combat muscle wasting.
Pitt researchers hypothesized that a targeted epidural electrical stimulation therapy could be used to rescue lost nerve cell function by amplifying sensory inputs to the motor neurons and engaging the degenerated neural circuits. These cellular changes could, in turn, translate into functional improvements in movement capacity.
How the Study Was Conducted
The Pitt study was conducted as part of a pilot clinical trial that enrolled three adults with milder forms of SMA (Type 3 or 4 SMA). During a study period of 29 days, participants were implanted with two spinal cord stimulation (SCS) electrodes that were placed in the lower back region on each side of the spinal cord, directing the stimulation exclusively to sensory nerve roots. Testing sessions lasted four hours each and were conducted five times a week for a total of 19 sessions, until the stimulation device was explanted.
After confirming that the stimulation worked as intended and engaged spinal motor neurons, researchers performed a battery of tests to measure muscle strength and fatigue, changes in gait, range of motion, and walking distance, as well as motoneuron function.
“Because SMA is a progressive disease, patients do not expect to get better as time goes on. But that is not what we saw in our study. Over the four weeks of treatment, our study participants improved in several clinical outcomes with improvements in activities of daily living. For instance, toward the end of the study, one patient reported being able to walk from their home to the lab without becoming tired,” said co-corresponding author Elvira Pirondini, Ph.D., assistant professor of physical medicine and rehabilitation at Pitt.
All participants increased their 6-Minute Walk Test score – a measure of muscle endurance and fatigue – by at least 20 meters, compared to a mean improvement of 1.4 meters over three months of comparable exercise regimen unaided by SCS and a median increase of 20 meters after 15 months of SMA-specific neuroprotective pharmacologic therapy.
These functional gains were mirrored by improved neural function, including a boost in motoneurons’ capacity to generate electrical impulses and transmit them to the muscles.
“Our results suggest that this neurostimulation approach could be broadly applied to treat other neurodegenerative diseases beyond SMA, such as ALS or Huntington’s disease, as long as appropriate cell targets are identified in the course of future research,” said co-corresponding author Robert Friedlander, M.D., chair of neurosurgery at Pitt and co-director of the UPMC Neurological Institute. “We are hoping to continue working with SMA patients and launch another clinical trial to test the long-term efficacy and safety of electrical spinal cord stimulation.”
Reference: “First-in-human study of epidural spinal cord stimulation in individuals with spinal muscular atrophy” by Genís Prat-Ortega, Scott Ensel, Serena Donadio, Luigi Borda, Amy Boos, Prakarsh Yadav, Nikhil Verma, Jonathan Ho, Erick Carranza, Sarah Frazier-Kim, Daryl P. Fields, Lee E. Fisher, Doug J. Weber, Jeffrey Balzer, Tina Duong, Steven D. Weinstein, Mikael J. L. Eliasson, Jacqueline Montes, Karen S. Chen, Paula R. Clemens, Peter Gerszten, George Z. Mentis, Elvira Pirondini, Robert M. Friedlander and Marco Capogrosso, 5 February 2025, Nature Medicine.
DOI: 10.1038/s41591-024-03484-8
Genis Prat-Ortega, Ph.D., Scott Ensel, B.S., and Serena Donadio, B.S., all of Pitt, are co-first authors of the study. Other authors of the study are Amy Boos, M.S., Jacqueline Ho, M.D., Sarah Frazier-Kim, Daryl Fields, M.D., Ph.D., Lee Fisher, Ph.D., Paula Clemens, M.D., and Peter Gerszten, M.D., all of Pitt; Luigi Borda, B.S., Prakarsh Yadav, B.S., Nikhil Verma, B.S., and Douglas Weber, Ph.D., all of Carnegie Mellon University; Tina Duong, Ph.D., of Stanford University; Jacqueline Montes, P.T., Ed.D., and George Mentis, Ph.D., of Columbia University; Steven Weinstein, Mikael Eliasson, of Genentech Roche; and Karen S. Chen, of the Spinal Muscular Atrophy Foundation.
This research was supported by an exploratory research grant from F. Hoffmann–La Roche. Genentech, Inc. (a member of the Roche Group) and the University of Pittsburgh hold rights to IP related to this study. Marco Capogrosso, Genis Prat-Ortega and Mikael Eliasson hold patent applications that relate to this work.

News
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]
This Tiny Cellular Gate Could Be the Key to Curing Cancer – And Regrowing Hair
After more than five decades of mystery, scientists have finally unveiled the detailed structure and function of a long-theorized molecular machine in our mitochondria — the mitochondrial pyruvate carrier. This microscopic gatekeeper controls how [...]
Unlocking Vision’s Secrets: Researchers Reveal 3D Structure of Key Eye Protein
Researchers have uncovered the 3D structure of RBP3, a key protein in vision, revealing how it transports retinoids and fatty acids and how its dysfunction may lead to retinal diseases. Proteins play a critical [...]
5 Key Facts About Nanoplastics and How They Affect the Human Body
Nanoplastics are typically defined as plastic particles smaller than 1000 nanometers. These particles are increasingly being detected in human tissues: they can bypass biological barriers, accumulate in organs, and may influence health in ways [...]
Measles Is Back: Doctors Warn of Dangerous Surge Across the U.S.
Parents are encouraged to contact their pediatrician if their child has been exposed to measles or is showing symptoms. Pediatric infectious disease experts are emphasizing the critical importance of measles vaccination, as the highly [...]
AI at the Speed of Light: How Silicon Photonics Are Reinventing Hardware
A cutting-edge AI acceleration platform powered by light rather than electricity could revolutionize how AI is trained and deployed. Using photonic integrated circuits made from advanced III-V semiconductors, researchers have developed a system that vastly [...]
A Grain of Brain, 523 Million Synapses, Most Complicated Neuroscience Experiment Ever Attempted
A team of over 150 scientists has achieved what once seemed impossible: a complete wiring and activity map of a tiny section of a mammalian brain. This feat, part of the MICrONS Project, rivals [...]
The Secret “Radar” Bacteria Use To Outsmart Their Enemies
A chemical radar allows bacteria to sense and eliminate predators. Investigating how microorganisms communicate deepens our understanding of the complex ecological interactions that shape our environment is an area of key focus for the [...]