When you hear the word ‘quantum’, you may imagine physicists working on a new ground breaking theory. Or perhaps you’ve read about quantum computers and how they might change the world. But one lesser-known field is also starting to reap the benefits of the quantum realm – medicine.

As part of the EU’s Quantum Technologies Flagship program, a number of quantum technologies are being developed in Europe to transform a variety of fields. Medicine in particular looks set to gain, with several projects now underway to see how we could improve medical imaging or detect certain diseases more easily.

One of those projects is macQsimal, which is using small devices known as quantum sensors to revolutionize several areas – quantum-enabled atomic clocks, gyroscopes, magnetometers, and more precise electromagnetic radiation and gas concentration measurements. The project, which began in October 2018, hopes to bring their ideas to market as some of the first quantum-enabled technologies.

‘The goal is to put products as prototypes on the market,’ said Dr Jacques Haesler from the Swiss Centre for Electronics and Microtechnology (CSEM), the project coordinator for macQsimal. ‘At the end, (we want to) be able to take further steps then commercialize these devices. But we also have to think about the next generation of quantum sensors, which will use more fancy quantum effects like entanglement or the superposition of states.’

Image Credit:  Universität Ulm / Heiko Grandel

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

Read more at horizon-magazine.eu

News This Week

Illuminating the world of nanoparticles

Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within these materials, then you could [...]

Chemistry in the turbulent interstellar medium

Over 200 molecules have been discovered in space, some (like Buckminsterfullerene) very complex with carbon atoms. Besides being intrinsically interesting, these molecules radiate away heat, helping giant clouds of interstellar material cool and contract [...]