In a recent study published in Science Advances, a group of researchers assessed whether dendritic spine head diameter in the temporal cortex is a better predictor of episodic memory performance in older adults than synapse quantity, accounting for β amyloid (Aβ) plaques (Clusters of protein fragments in the brain), neurofibrillary tangles (NFTs) (Twisted protein fibers inside brain cells), and sex.
Background
Episodic memory, essential for recalling personal experiences, declines with age and neurodegenerative diseases, especially due to temporal cortex injury. Dendritic spines, key postsynaptic compartments in the brain, influence synapse strength and are crucial for memory. Spine loss naturally occurs with aging, particularly in regions vital for memory, and is more strongly associated with memory impairment in Alzheimer’s disease (AD) (A progressive brain disorder causing memory loss) than Aβ plaques or NFTs.
Further research is needed to clarify how specific features of dendritic spines contribute to memory function in aging beyond the effects of natural spine loss and common neurodegenerative pathologies.
About the study
Postmortem samples of brain areas Brodmann area (BA) 6 and BA37 were obtained from participants in the Religious Orders Study and Rush Memory and Aging Project (ROSMAP), which includes individuals who enroll without known dementia and agree to annual clinical evaluations and brain donation upon death.
The study was approved by an institutional review board at Rush University Medical Center. All participants provided informed consent, including consent for brain donation and sharing of their resources. The samples analyzed in this study covered a range of brain pathologies and cognitive scores, with appropriately sized frozen tissue samples available for experiments.
Cognitive testing of ROSMAP participants included assessments of episodic memory, perceptual speed, visuospatial ability, semantic memory, and working memory, with composite scores calculated for each domain. Additionally, the Mini-Mental State Examination (MMSE) was administered, and clinical diagnoses of major depressive disorder were made based on established criteria.
Dendritic spines and synaptic markers were visualized using Golgi-Cox staining of brain samples from BA6 and BA37. Imaging of dendrites was performed by a blinded experimenter using bright-field microscopy at high magnification. Dendritic segments meeting specific criteria were selected for analysis, and 3D digital reconstructions of dendrites and spines were conducted using specialized software. Spine morphology was classified into various categories, and quantitative measurements were collected for analysis. In total, 45,763 μm of dendrite length from 2,157 neurons were analyzed, yielding data on 55,521 individual spines.
Statistical analyses involved a multistage approach to validate the generalizability of results. Dendritic spine traits were analyzed using LASSO (Least Absolute Shrinkage and Selection Operator) regression to identify which features most significantly contributed to episodic memory performance in older adults. Cross-validation techniques ensured model accuracy, and the results were replicated in an independent sample. Spearman correlations were used to explore relationships between dendritic spine features, pathology, and memory scores, with multiple comparisons controlled for using an appropriate false discovery rate.
Study results
Dendritic spines were sampled and analyzed from the frontal and temporal cortices of 128 individuals from the ROSMAP. These postmortem samples were taken from BA6 within the premotor cortex and BA37 within the temporal cortex. The participants, who had a mean age of 90.53 ± 6.06 years, displayed varying cognitive performance scores and levels of AD-related neuropathology. Using bright-field microscopy, dendritic spine density and morphology in BA37 and BA6 tissue slices were imaged at 60X magnification and reconstructed in three dimensions. The data were then analyzed to determine the relationship between dendritic spine features and episodic memory performance.
The datasets from BA37 and BA6 were subjected to a supervised learning algorithm to identify specific dendritic spine features that might predict episodic memory performance beyond the effects of other variables, such as AD-related neuropathology. The samples were divided into a discovery set (n = 63) and a validation set (n = 62), with three cases excluded due to missing data. LASSO regression was performed on the discovery set to identify the dendritic spine features most strongly associated with episodic memory function. The analysis revealed that spine head diameter in BA37 was the most significant predictor of episodic memory performance.
The results were validated using nested model cross-validation in the replication set, confirming that models including spine head diameter, along with NFTs, neuritic Aβ plaques, and sex, provided the best prediction of episodic memory. Removing spine length, density, and volume from the model further improved its accuracy, highlighting the importance of spine head diameter in the temporal cortex for memory function.
Conversely, LASSO regression on the BA6 dataset identified spine length as the strongest predictor of episodic memory performance, although its association was weaker compared to BA37 spine head diameter. Models incorporating BA6 spine features did not perform as well, indicating that the contribution of spine head diameter to memory performance is specific to the BA37 temporal cortex.
Further analysis showed a significant positive correlation between BA37 spine head diameter and episodic memory score, even after controlling for multiple comparisons. In contrast, BA37 spine density did not significantly correlate with cognitive scores or AD-related pathology, and no significant correlations were found between BA6 spine features and cognition or pathology measures.
Conclusions
To summarize, using tissue samples from 128 ROSMAP participants, the analysis revealed that larger dendritic spine head diameters in the temporal cortex were associated with better episodic memory performance, while spine density showed no significant effect. These findings suggest that synaptic strength, rather than the number of synapses, is crucial for maintaining memory in older adults, with implications for targeted therapeutic strategies in preclinical AD.
- Courtney K. Walker et al. Dendritic spine head diameter predicts episodic memory performance in older adults.Sci. Adv.(2024).
DOI:10.1126/sciadv.adn5181 https://www.science.org/doi/10.1126/sciadv.adn5181
News
Microplastics in the bloodstream may pose hidden risks to brain health
In a recent study published in the journal Science Advances, researchers investigated the impact of microplastics on blood flow and neurobehavioral functions in mice. Using advanced imaging techniques, they observed that microplastics obstruct cerebral blood [...]
AI Surveillance: New Study Exposes Hidden Risks to Your Privacy
A new mathematical model enhances the evaluation of AI identification risks, offering a scalable solution to balance technological benefits with privacy protection. AI tools are increasingly used to track and monitor people both online [...]
Permafrost Thaw: Unleashing Ancient Pathogens and Greenhouse Gases
Permafrost is a fascinating yet alarming natural phenomenon. It refers to ground that remains frozen for at least two consecutive years. Mostly found in polar regions like Siberia, Alaska, and Canada, permafrost plays a [...]
Frequent social media use tied to higher levels of irritability
A survey led by researchers from the Center for Quantitative Health at Massachusetts General Hospital and Harvard Medical School has analyzed the association between self-reported social media use and irritability among US adults. Frequent [...]
Australian oysters’ blood could hold key to fighting drug-resistant superbugs
Protein found in Sydney rock oysters’ haemolymph can kill bacteria and boost some antibiotics’ effectiveness, scientists discover An antimicrobial protein found in the blood of an Australian oyster could help in the fight against [...]
First U.S. H5N1 Death Sparks Urgency: Scientists Warn Bird Flu Is Mutating Faster Than Expected
A human strain of H5N1 bird flu isolated in Texas shows mutations enabling better replication in human cells and causing more severe disease in mice compared to a bovine strain. While the virus isn’t [...]
AI Breakthrough in Nanotechnology Shatters Limits of Precision
At TU Graz, a pioneering research group is leveraging artificial intelligence to drastically enhance the way nanostructures are constructed. They aim to develop a self-learning AI system that can autonomously position molecules with unprecedented precision, potentially [...]
How Missing Sleep Lets Bad Memories Haunt Your Mind
Research reveals that a lack of sleep can hinder the brain’s ability to suppress unwanted memories and intrusive thoughts, emphasizing the importance of restful sleep for mental health. Sleep deprivation has been found to [...]
WHO issues new warning over ‘mystery virus’ and calls for return of COVID restrictions
The World Health Organization (WHO) has called for the reinstatement of restrictions implemented during the COVID-19 pandemic as cases of human metapneumovirus (HMPV) continue to surge. While hospitals in China are overwhelmed with positive [...]
A Breath Away From a Cure: How Xenon Gas Could Transform Alzheimer’s Treatment
A breakthrough study highlights Xenon gas as a potential game-changer in treating Alzheimer’s disease, demonstrating its ability to mitigate brain damage and improve cognitive functions in mouse models. A forthcoming clinical trial aims to test its [...]
False Memories Under Fire: Surprising Science Behind What We Really Recall
New research challenges the ease of implanting false memories, highlighting flaws in the influential “Lost in the Mall” study. By reexamining the data from a previous study, researchers found that many supposed false memories [...]
Born Different? Cambridge Scientists Uncover Innate Sex Differences in Brains
Cambridge researchers found that sex differences in brain structure exist from birth, with males having more white matter and females more grey matter, highlighting early neurodiversity. Research from the Autism Research Centre at the University [...]
New study shows risk factors for dementia – virus causes deposits in the brain
Research into the causes of Alzheimer's is not yet complete. Now a new study shows that head trauma can activate herpes viruses and promote the disease. Frankfurt am Main – As a neurodegenerative disease, [...]
Are Machines Truly Thinking? Modern AI Systems Have Finally Achieved Turing’s Vision
Modern AI systems have fulfilled Turing’s vision of machines that learn and converse like humans, but challenges remain. A new paper highlights concerns about energy consumption and societal inequality while calling for more robust [...]
The Surprising Link Between Smell, Sound, and Emotions
New research reveals how smell and hearing interact in the brain to drive social behavior, using mouse maternal instincts as a model. Imagine you’re at a dinner party, but you can’t smell the food [...]
Brain cells age at different rates
As our body ages, not only joints, bones and muscles wear out, but also our nervous system. Nerve cells die, are no longer fully replaced, and the brain shrinks. "Aging is the most important risk factor [...]