A study from Weill Cornell Medicine has shed light on a survival mechanism employed by cancers, which often emit molecules into the bloodstream that cause detrimental changes to the liver. These modifications shift the liver into a state of inflammation, leading to a buildup of fat and hindering its regular detoxifying abilities. The research reveals potential avenues for developing new diagnostic tests and treatments to detect and reverse this process.
The study, which was recently published in the journal Nature, discovered that various types of tumors located outside the liver can remotely induce alterations to the liver that mimic fatty liver disease. This transformation is brought about by the secretion of extracellular vesicles and particles (EVPs) loaded with fatty acids. Evidence of this mechanism was discovered in both animal cancer models and the livers of human cancer patients.
“Our findings show that tumors can lead to significant systemic complications including liver disease, but also suggest that these complications can be addressed with future treatments,” said study co-senior author Dr. David Lyden, the Stavros S. Niarchos Professor in Pediatric Cardiology and a professor of pediatrics and of cell and developmental biology at Weill Cornell Medicine.
Tumor cell-derived EVPs induced accumulation of lipid droplets in the mouse liver. Green, lipid droplet. Blue, DAPI. Credit: Gang Wang, Jianlong Li, David Lyden
For the past two decades, Dr. Lyden, who is also a member of the Gale and Ira Drukier Institute for Children’s Health and the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, and his research group have been studying the systemic effects of cancers. These effects reflect specific strategies cancers use to secure their survival and speed their progression. In their work published in 2015, for example, the team discovered that pancreatic cancers secrete molecules encapsulated in extracellular vesicles, that travel through the bloodstream, are taken up by the liver, and prepare the organ to support the outgrowth of new, metastatic tumors.
In the new study, the researchers uncovered a different set of liver changes caused by distant cancer cells which they observed in animal models of bone, skin, and breast cancer that metastasize to other organs but not to the liver. The study’s key finding is that these tumors induce the accumulation of fat molecules in liver cells, consequently reprogramming the liver in a way that resembles the obesity- and alcohol-related condition known as fatty liver disease.
The team also observed that reprogrammed livers have high levels of inflammation, marked by elevated levels of tumor necrosis factor-α (TNF-α), and low levels of drug-metabolizing enzymes called cytochrome P450, which break down potentially toxic molecules, including many drug molecules. The observed reduction in cytochrome P450 levels could explain why cancer patients often become less tolerant of chemotherapy and other drugs as their illness progresses.
The researchers traced this liver reprogramming to EVPs that are released by the distant tumors and carry fatty acids, especially palmitic acid. When taken up by liver-resident immune cells called Kupffer cells, the fatty acid cargo triggers the production of TNF-α, which consequently drives fatty liver formation.
Although the researchers principally used animal models of cancers in the study, they observed similar changes in the livers of newly diagnosed pancreatic cancer patients who later developed non-liver metastases.
“One of our more striking observations was that this EVP-induced fatty liver condition did not co-occur with liver metastases, suggesting that causing fatty liver and preparing the liver for metastasis are distinct strategies that cancers use to manipulate liver function,” said co-first author Dr. Gang Wang, a postdoctoral associate in the Lyden laboratory. Dr. Jianlong Li, a scientific collaborator in the Lyden laboratory, is also a co-first author of the study.
The scientists suspect that the fatty liver condition benefits cancers in part by turning the liver into a lipid-based source of energy to fuel cancer growth.
“We see in liver cells not only an abnormal accumulation of fat but also a shift away from the normal processing of lipids so that the lipids that are being produced are more advantageous to the cancer,” said co-senior author Dr. Robert Schwartz, associate professor of medicine in the Division of Gastroenterology and Hepatology and a member of the Meyer Cancer Center at Weill Cornell Medicine and a hepatologist at NewYork-Presbyterian/Weill Cornell Medical Center.
That may not be the only benefit that cancers derive from this liver alteration. “There are also crucial molecules involved in immune cell function, but their production is altered in these fatty livers, hinting that this condition may also weaken anti-tumor immunity,” said co-senior author Dr. Haiying Zhang, assistant professor of cell and developmental biology in pediatrics at Weill Cornell Medicine.
The researchers were able to mitigate these systemic effects of tumors on the livers by implementing strategies such as blocking tumor-EVP release, inhibiting the packaging of palmitic acid into tumor EVPs, suppressing TNF-α activity, or eliminating Kupffer cells in the experimental animal models. The researchers are further investigating the potential of implementing these strategies in human patients to block these remote effects of tumors on the liver and exploring the possibility of utilizing the detection of palmitic acid in tumor EVPs circulating in the blood as a potential warning sign of advanced cancer.
Reference: “Tumour extracellular vesicles and particles induce liver metabolic dysfunction” by Gang Wang, Jianlong Li, Linda Bojmar, Haiyan Chen, Zhong Li, Gabriel C. Tobias, Mengying Hu, Edwin A. Homan, Serena Lucotti, Fengbo Zhao, Valentina Posada, Peter R. Oxley, Michele Cioffi, Han Sang Kim, Huajuan Wang, Pernille Lauritzen, Nancy Boudreau, Zhanjun Shi, Christin E. Burd, Jonathan H. Zippin, James C. Lo, Geoffrey S. Pitt, Jonathan Hernandez, Constantinos P. Zambirinis, Michael A. Hollingsworth, Paul M. Grandgenett, Maneesh Jain, Surinder K. Batra, Dominick J. DiMaio, Jean L. Grem, Kelsey A. Klute, Tanya M. Trippett, Mikala Egeblad, Doru Paul, Jacqueline Bromberg, David Kelsen, Vinagolu K. Rajasekhar, John H. Healey, Irina R. Matei, William R. Jarnagin, Robert E. Schwartz, Haiying Zhang and David Lyden, 24 May 2023, Nature.
DOI: 10.1038/s41586-023-06114-4

News
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]
Groundbreaking therapy approved: chances of cure for 7000 diseases:
Hereditary diseases are usually not curable. Now, however, an epochal turning point is taking place in medicine: For the first time ever, a therapy with the CRISPR/Cas9 gene scissors has received approval. According to [...]
Uncovering the Genetic Mystery: Why Some Never Show COVID-19 Symptoms
New study shows that common genetic variation among people is responsible for mediating SARS-CoV-2 asymptomatic infection. Have you ever wondered why some people never became sick from COVID-19? A study published recently in the journal Nature shows that common [...]
AI maps tumor geography for tailored treatments
Researchers have integrated AI approaches from satellite mapping and community ecology to develop a tool to interpret data obtained from tumor tissue imaging, with the aim of implementing a more individualized approach to cancer care. [...]
Lung cancer cells’ ‘memories’ suggest new strategy for improving treatment
A new understanding of lung cancer cells' "memories" suggests a new strategy for improving treatment, Memorial Sloan Kettering Cancer Center (MSK) researchers have found. Research from the lab of cancer biologist Tuomas Tammela, MD, Ph.D. [...]
Artificial sensor similar to a human fingerprint can recognize fine fabric textures
An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle [...]