A groundbreaking machine-learning study has unmasked the best drug combinations to prevent COVID-19 from coming back after an initial infection. It turns out these combos are not the same for every patient.
That the data came from China is significant for two reasons. First, when patients are treated for COVID-19 in the U.S, it is normally with one or two drugs. Early in the pandemic, doctors in China could prescribe as many as eight different drugs, enabling analysis of more drug combinations. Second, COVID-19 patients in China must quarantine in a government-run hotel after being discharged from the hospital, which allows researchers to learn about reinfection rates in a more systematic way.
“That makes this study unique and interesting. You can’t get this kind of data anywhere else in the world,” said Xinping Cui, UCR statistics professor and study author.
The study project began in April 2020, about a month into the pandemic. At the time, most studies were focused on death rates. However, doctors in Shenzhen, near Hong Kong, were more concerned about recurrence rates because fewer people there were dying.
“Surprisingly, nearly 30% of patients became positive again within 28 days of being released from the hospital,” said Jiayu Liao, associate professor of bioengineering and study co-author.
Data for more than 400 COVID patients was included in the study. Their average age was 45, most were infected with moderate cases of the virus, and the group was evenly divided by gender. Most were treated with one of various combinations of an antiviral, an anti-inflammatory, and an immune-modulating drug, such as interferon or hydroxychloroquine.
That various demographic groups had better success with different combinations can be traced to the way the virus operates.
“COVID-19 suppresses interferon, a protein cells make to inhibit invading viruses. With defenses lowered, COVID can replicate until the immune system explodes in the body, and destroys tissues,” explained Liao.
“When we get treatment for diseases, many doctors tend to offer one solution for people 18 and up. We should now reconsider age differences, as well as other disease conditions, such as diabetes and obesity,” Liao said.
Most of the time, when conducting drug efficacy tests, scientists design a clinical trial in which people having the same disease and baseline characteristics are randomly assigned to either treatment or control groups. But that approach does not consider other medical conditions that may affect how the drug works—or doesn’t work—for specific sub-groups.
Because this study utilized real-world data, the researchers had to adjust for factors that could affect the outcomes they observed. For example, if a certain drug combination was given mostly to older people and proved ineffective, it would not be clear whether the drug is to blame or the person’s age.
“For this study, we pioneered a technique to attack the challenge of confounding factors by virtually matching people with similar characteristics who were undergoing different treatment combinations,” Cui said. “In this way, we could generalize the efficacy of treatment combinations in different subgroups.”
While COVID-19 is better understood today, and vaccines have greatly reduced death rates, there remains much to be learned about treatments and preventing reinfections. “Now that recurrence is more of a concern, I hope people can use these results,” Cui said.
Machine learning has been used in many areas related to COVID, such as disease diagnosis, vaccine development and drug design, in addition to this new analysis of multi-drug combinations. Liao believes the technology will have an even bigger role to play going forward.
“In medicine, machine learning and artificial intelligence have not yet had as much impact as I believe they will in the future,” Liao said. “This project is a great example of how we can move toward truly personalized medicine.”

News
Tiny robots made from human cells heal damaged tissue
The ‘anthrobots’ were able to repair a scratch in a layer of neurons in the lab. Scientists have developed tiny robots made of human cells that are able to repair damaged neural tissue1. The [...]
Antimicrobial Resistance – A Global Concern
Key facts Antimicrobial resistance (AMR) is one of the top global public health and development threats. It is estimated that bacterial AMR was directly responsible for 1.27 million global deaths in 2019 and contributed to [...]
Advancing Pancreatic Cancer Treatment with Nanoparticle-Based Chemotherapy
Pancreatic cancer, a particularly lethal form of cancer and the fourth leading cause of cancer-related deaths in the western world, often remains undiagnosed until its advanced stages due to a lack of early symptoms. [...]
The ‘jigglings and wigglings of atoms’ reveal key aspects of COVID-19 virulence evolution
Richard Feynman famously stated, "Everything that living things do can be understood in terms of the jigglings and wigglings of atoms." This week, Nature Nanotechnology features a study that sheds new light on the evolution of the coronavirus [...]
AI system self-organizes to develop features of brains of complex organisms
Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features [...]
How Blind People Recognize Faces via Sound
Summary: A new study reveals that people who are blind can recognize faces using auditory patterns processed by the fusiform face area, a brain region crucial for face processing in sighted individuals. The study employed [...]
Treating tumors with engineered dendritic cells
Cancer biologists at EPFL, UNIGE, and the German Cancer Research Center (Heidelberg) have developed a novel immunotherapy that does not require knowledge of a tumor's antigenic makeup. The new results may pave the way [...]
Networking nano-biosensors for wireless communication in the blood
Biological computing machines, such as micro and nano-implants that can collect important information inside the human body, are transforming medicine. Yet, networking them for communication has proven challenging. Now, a global team, including EPFL [...]
Popular Hospital Disinfectant Ineffective Against Common Superbug
Research conducted during World Antimicrobial Awareness Week examines the effects of employing suggested chlorine-based chemicals to combat Clostridioides difficile, the leading cause of antibiotic-related illness in healthcare environments worldwide. A recent study reveals that a [...]
Subjectivity and the Evolution of AI Philosophy
An Historical Overview of the Philosophy of Artificial Intelligence by Anton Vokrug Many famous people in the philosophy of technology have tried to comprehend the essence of technology and link it to society and human [...]
How Lockdowns Shaped the Virus: AI Uncovers COVID-19’s Evolutionary Secrets
A new research study shows that human behavior, like lockdowns, influences the evolution of COVID-19, leading to strains that are more transmissible earlier in their lifecycle. Using artificial intelligence technology and mathematical modeling, a research [...]
Groundbreaking therapy approved: chances of cure for 7000 diseases:
Hereditary diseases are usually not curable. Now, however, an epochal turning point is taking place in medicine: For the first time ever, a therapy with the CRISPR/Cas9 gene scissors has received approval. According to [...]
Uncovering the Genetic Mystery: Why Some Never Show COVID-19 Symptoms
New study shows that common genetic variation among people is responsible for mediating SARS-CoV-2 asymptomatic infection. Have you ever wondered why some people never became sick from COVID-19? A study published recently in the journal Nature shows that common [...]
AI maps tumor geography for tailored treatments
Researchers have integrated AI approaches from satellite mapping and community ecology to develop a tool to interpret data obtained from tumor tissue imaging, with the aim of implementing a more individualized approach to cancer care. [...]
Lung cancer cells’ ‘memories’ suggest new strategy for improving treatment
A new understanding of lung cancer cells' "memories" suggests a new strategy for improving treatment, Memorial Sloan Kettering Cancer Center (MSK) researchers have found. Research from the lab of cancer biologist Tuomas Tammela, MD, Ph.D. [...]
Artificial sensor similar to a human fingerprint can recognize fine fabric textures
An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle [...]