High-grade serous ovarian cancer (HGSOC) is among the deadliest human cancers and its prognosis remains extremely poor. An article published in Advanced Science explored the self-therapeutic properties of gold nanoparticles to identify a molecular axis that fosters the growth of HGSOC.
The gold nanoparticles injected intravenously or intraperitoneally in single or multiple doses over two weeks were assessed for their biodistribution and toxicity. The gold nanoparticles showed no histological or biochemical toxicity to vital organs.
Furthermore, an orthotopic patient-derived xenograft (PDX) model was used to confirm that the gold nanoparticles inhibited tumor growth in patients with HGSOC. Moreover, to validate the molecular mechanisms underlying the efficacy of gold nanoparticles, a cell line-based human xenograft tumor was treated with gold nanoparticles and PI-103 (an mTOR dual-kinase inhibitor), individually and as a combination therapy (of gold nanoparticles and PI-103).
The results revealed that the combination therapy showed similar tumor growth inhibition as gold nanoparticles alone. Thus, the present report illustrated the self-therapeutic properties of gold nanoparticles which can be explored to identify a critical signaling axis associated with poor prognosis in ovarian cancer, providing an opportunity to rectify and improve patient outcomes.
Biomedical Applications of Gold Nanoparticles
HGSOC is a unique epithelial cancer characterized by the dysfunction of p53, genomic instability rather than driver mutations, advanced stage at onset, probable fallopian tube epithelium origin, and a serous tubal in situ carcinoma precursor. Germline deleterious mutations in BRCA1 and BRCA2 genes, as well as other less prevalent genes involved in DNA repairs, such as PALB2 and RAD51c, are associated with its carcinogenesis.
Major efforts in biomedical nanotechnology have focused on drug delivery and biosensor applications. Although the size- and shape-dependent physicochemical and optoelectronic properties of inorganic nanoparticles have been studied in detail, their biological properties remain practically unexplored.
Gold nanoparticles have attracted wide attention in various biomedical applications because they are biocompatible, easy to synthesize, characterize, and modify surfaces because of the strong ability of gold nanoparticles to bind to thiol (–SH-) and amine (–NH2-) containing molecules.
Gold nanoparticles have tunable chemical, optoelectronic, and biological properties, increasing their applicability in therapeutic agents, sensory probes, drug delivery vehicles, and catalytic agents.
Previously, the self-therapeutic properties of 20-nanometer gold nanoparticles that inhibited tumor growth in two preclinical orthotopic models of ovarian cancer were demonstrated. This took place through through the inhibition of mitogen-activated protein kinase (MAPK)-activation and reversal of epithelial-mesenchymal transition (EMT) via downregulation of several heparin-binding growth factors.
Furthermore, exploiting the self-therapeutic property of gold nanoparticles, the disruption of bidirectional crosstalk between pancreatic cancer cells and pancreatic cancer-associated fibroblasts (CAFs) that reprogrammed tumor microenvironment (TME) in pancreatic cancer led to the inhibition of tumor growth in an orthotopic model was reported.
Gold Nanoparticles Towards Inhibition of Ovarian Cancer Growth
Previously, gold nanoparticles were utilized as a tool to capture proteins of interest. Once administered into a biological system, gold nanoparticles interact with various molecules and form a protein corona on the surface, impacting the biological properties of the particle.
Exploring the modulation of the protein corona around gold nanoparticles helped identify various new targets, including hepatoma-derived growth factor (HDGF), survival motor neuron domain containing 1 (SMNDC1), inorganic pyrophosphatase (PPA1), peptidase inhibitor 15 (PI15), gasdermin B, and insulin-like growth factors (IGFs) in ovarian cancer.
Based on the bioaccumulated gold nanoparticles, the non-toxic dose of the nanoparticles was determined to demonstrate the suppression of tumor growth in an orthotopic PDX model mouse. The antitumor activity was mediated via an autoregulatory feedback loop of IGFBP2/PTEN interaction through the deactivation of the PI3K/Akt/mTOR growth signaling pathway and activating the survival protein PTEN. Moreover, the combination therapy of gold nanoparticles and PI-103 showed similar tumor growth inhibition as gold nanoparticles alone.
Thus, the present study demonstrated that the gold nanoparticles could serve as an important tool to investigate and identify the critical molecular axes responsible for the progression of ovarian cancer.
Conclusion
In conclusion, a new regulatory protein, IGFBP2, was identified that facilitated the gold nanoparticles to impair the development and progression of ovarian cancer. Based on the non-toxic dose of gold nanoparticles, the suppression of tumor growth in an orthotopic PDX model mouse was demonstrated.
A novel application of self-therapeutic nanoparticles was demonstrated in the present study. Additionally, the key signaling axis responsible for tumor growth was identified. These nanoparticles were used to validate their IGFBP2 targeting capacity to study the feasibility of this concept. The results revealed that the reduction of IGFBP2 levels partially mediated the antitumor efficacy of gold nanoparticles.
Thus, self-therapeutic gold nanoparticles were presented as a promising therapy for ovarian cancer either as an individual or combination therapy (with PI-103), adding value to the current treatment, which is limited by options and poor outcomes. These nanoparticles can also be quickly translated into the clinic.

News
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]