Novel drugs, such as vaccines against covid-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was not clarified for a long time. Scientists at the Max Planck Institute for Polymer Research have now followed the path of such a particle into a cell using a combination of several microscopy methods. They were able to observe a cell-internal process that effectively separates blood components and nanoparticles. | |
The scientists have now published their results in the journal Nature Communications (“Endosomal sorting results in a selective separation of the protein corona from nanoparticles”). |
Nanoparticles are a current field of research and it is impossible to imagine modern medicine without them. They serve as microscopic drug capsules that are less than a thousandth of a millimeter in diameter. Among other things, they are used in current vaccines against the Corona virus to effectively deliver active ingredients to where they are actually needed. In most cases, the capsules dock onto cells, are enveloped by them, and are absorbed into them. Inside the cell, chemical processes can then open the capsules, releasing the active ingredient. | |
However, this idealized process usually does not take place: As it travels through the bloodstream, blood proteins accumulate on the surface of the nanotransporter. These also find their way into the cell. For a long time, it was an unresolved question whether this process impairs the release of the active ingredient. | |
Scientists working with Ingo Lieberwirth, group leader in Katharina Landfester’s department, have now addressed this question. They have labelled a nanoparticle and blood proteins with different fluorescent dyes. As a result, both glow with different colours when viewed through a high-resolution light microscope. At the same time, the researchers were able to observe the process in parallel and at higher resolution using an electron microscope. | |
By combining both methods, the scientists were able to observe that the cell initially absorbs the composite of nanoparticles and blood proteins. In the cell, they now observed something surprising: The protein coating detaches from the nanoparticle and releases it. After some time, proteins and particles are present separately in the cell. | |
“We therefore assume that the drug release in the cell is not disturbed by the protein coating,” says Ingo Lieberwirth. “However, it is now important to find out how exactly the process takes place inside the cell.” |

News
New material discovery could revolutionize roll-out of global vaccinations
New raw vaccine materials that could make vaccines more accessible, sustainable, and ethical have been discovered. The results of the research have been published in Polymers. Adjuvants are vaccine ingredients that boost a person's immune response [...]
Scientists Develop Incredibly Lightweight Material 4 Times Stronger Than Steel
Researchers developed a light yet strong material by combining two unexpected ingredients—DNA and glass. Working at the nanoscale provides scientists with a deep understanding and precision in crafting and analyzing materials. In broader-scale production, and even [...]
New Implant Doctors Hope Will Cut Cancer Deaths in Half
Researchers at Houston's Rice University are developing an implant that could diminish deaths caused by cancer by half. The device will contain synthetically nurtured human cells and be embedded with sensors to keep track of cancer [...]
Machine learning helps predict drugs’ favorite subcellular haunts
Most drugs are small molecules that bind firmly to a specific target—some molecule in human cells that is involved in a disease—in order to work. For example, a cancer drug's target might be a [...]
Nanotechnology Breakthrough Could Help Treat Blindness
Scientists utilize nanotechnology to address a prevalent cause of vision loss. Scientists have discovered a way to use nanotechnology to create a 3D ‘scaffold’ to grow cells from the retina. This breakthrough could lead [...]
Decoding Women’s Health: Artificial Intelligence Revolutionizes PCOS Diagnosis
NIH study reviews 25 years of data and finds AI/ML can detect common hormone disorder. Artificial intelligence (AI) and machine learning (ML) can effectively detect and diagnose Polycystic Ovary Syndrome (PCOS), which is the most common [...]
Surprising Discovery Could Explain How Coronaviruses Jump Species
New insights are enhancing scientists’ efforts to stay ahead of COVID-19 and the next pandemic. Unexpected new insights into the ways COVID-19 infects cells could shed light on the virus’s adept ability to jump from one species to another [...]
A blood test for long Covid is possible, a study suggests
Scientists can now show key differences in the blood of those who recover from Covid — and those who don't. More than three years into the pandemic, the millions of people who have suffered [...]
FedEx for your cells: this biological delivery service could treat disease
Researchers want to know why cells produce tiny packages called vesicles — and whether these bundles could be used for therapy. Graça Raposo was a young postdoc in the Netherlands in 1996 when she [...]
New study on the genetic magnetization of living bacteria shows great potential for biomedicine
Magnetic bacteria possess extraordinary capabilities due to the magnetic nanoparticles, the magnetosomes, which are concatenated inside their cells. A research team at the University of Bayreuth has now transferred all of the approximately 30 [...]
Ultrathin Nanotech Promises to Help Tackle Antibiotic Resistance
Researchers have invented a nano-thin superbug-slaying material that could one day be integrated into wound dressings and implants to prevent or heal bacterial infections. The innovation – which has undergone advanced pre-clinical trials – [...]
Researchers Discover New Mnemomic Networks in the Brain
The medial temporal lobe (MTL) houses the human memory system. Broadly, it contains the hippocampus, parahippocampal cortex, perirhinal cortex, and entorhinal cortex. “One big challenge in studying the MTL is its great anatomical variability [...]
The Surprising Origin of a Deadly Hospital Infection
C. diff might not originate from external transmission but rather from within the infected patient themselves. Hospital staff dedicate significant effort to safeguard patients from infections during their hospital stay. Through practices ranging from [...]
Google AI breakthrough – huge step in finding genes that cause diseases
Google says it has made a significant step in identifying disease-causing genes, which could help spot rare genetic disorders. A new model named AlphaMissense is able to confidently classify 89 per cent of all [...]
New Study: Everyday Pleasures Can Boost Cognitive Performance
MINDWATCH study reveals cognitive peaks with everyday pleasures. Listening to music and drinking coffee are the sorts of everyday pleasures that can impact a person’s brain activity in ways that improve cognitive performance, including [...]
Moderna reveals new highly targeted COVID-19 vaccine mRNA-1283
Moderna has developed a new and improved version of its COVID-19 vaccine. The unique formulation (mRNA-1283) reduces the vaccine's content from the full-length SARS-CoV-2 spike protein to a narrowly focused encoding of just two [...]