Should we be prepared to change the population composition of a species in order to wipe out a disease that is a terrible burden to mankind? During a well-attended working breakfast organised by the European Parliament’s Panel for the Future of Science and Technology (STOA) on 19 March 2019, experts and citizens delved into the case study of eradicating malaria by applying gene-drive technology. This genetic tool could enable us to suppress mosquito populations that transmit malaria by reducing the number of females. This would be done by introducing in some mosquitos a genetic mechanism that easily spreads – ‘drives’ – through the whole population over generations.
The purpose of the event was to gain insight into the science and ethics of gene-drive technology, and of genome-editing technologies in general. The meeting was chaired by Kay Swinburne, (ECR, UK) a STOA Panel member, who underlined the importance of invigorating public debate on such technologies in her opening statement. With more than 200 million cases of malaria each year worldwide, of which over 400 000 are fatal, no one doubts the importance of fighting this disease. This, as Kay Swinburne explained, makes the case less controversial than, for instance, human genome editing, and therefore it provides a good opportunity to focus on understanding the benefits of genetic technology. Such an understanding, combined with knowledge of the risks and concerns, and with awareness of different stakeholder perspectives, should help policy-makers anticipate the application of genome-editing technologies. With three expert presentations and a debate, this event provided input on all these fronts.
First, Jens Van Steerteghem, of KU Leuven, and a former STOA trainee, gave the audience a technical overview of gene-drive technology in the context of eradicating malaria. His presentation was based on a scientific briefing that was used in a preliminary foresight analysis project on gene drive and malaria. This project aimed to map the potential societal impact of gene-drive technology and exposed the need for a general risk assessment framework for biotechnological applications. Jens Steerteghem explained how the number of female mosquitos would be suppressed if the gene-drive method were applied: by introducing in males a gene on the Y chromosome that cuts their X chromosome, so that they only pass Y chromosomes to their offspring. This offspring are consequently exclusively male, and additionally carry the new gene on their Y chromosome.
Delphine Thizy, Stakeholder Engagement Manager with the non-profit research organisation Target Malaria delivered the second presentation. This organisation is developing the gene-drive technology method to reduce malaria. Delphine Thizy described the current state of the research at her organisation, commenting that only in September 2018, their team published a paper on a successful eradication experiment on a mosquito population in a containment cage. She also addressed some of the misconceptions and concerns she hears when explaining Target Malaria’s plans. These worries are expressed both by citizens in Western countries but also, and more importantly, from stakeholders in countries in sub-Saharan Africa that suffer from malaria. People question, for example, if the targeted mosquito species are crucial pollinators, or if the reduction of mosquitos would disturb food chains. For both cases, she indicated that there is no need to worry: the targeted mosquitoes are not known to be pollinators and just three mosquito species would be targeted out of 830 species in Africa alone.

NanoApps Medical, Inc. Aims To Develop Nanobiosensor for Malaria, Ebola, and Zika

News This Week
Silver nanoparticles show promise in fighting antibiotic-resistant bacteria
In a new study, scientists with the University of Florida have found that a combination of silver nanoparticles and antibiotics is effective against antibiotic-resistant bacteria. The researchers hope to turn this discovery into viable [...]
Combating severe cancer with a new drug delivery system
Peritoneal cancer is difficult to treat and has a poor survival prognosis. But a new and effective nanomedicine delivery system is offering some hope. The company is called NaDeNo and is well underway with [...]
New Research Shows How Ketamine Acts As “Switch” in the Brain
According to a new study by researchers at Penn Medicine, ketamine, which is well-known as an anesthetic and is becoming increasingly popular as an antidepressant, dramatically reorganizes activity in the brain, almost as if [...]
Supercharged T Cells: A New Way To Kill Pancreatic Cancer With Minimal Side Effects
A new immunotherapy releases cancer-killing cytokines only within the tumor. Researchers at the University of California San Francisco (UCSF) have developed a new T cell-based immunotherapy that selectively targets cancer cells, producing a powerful anti-cancer cytokine [...]
AI has designed bacteria-killing proteins from scratch – and they work
An AI was tasked with creating proteins with anti-microbial properties. Researchers then created a subset of the proteins and found some did the job. An AI has designed anti-microbial proteins that were then tested [...]
Using nanoparticles, researchers can identify and deliver synergistic combinations of cancer drugs
Treating cancer with combinations of drugs can be more effective than using a single drug. However, figuring out the optimal combination of drugs, and making sure that all of the drugs reach the right [...]
Humanity May Reach Singularity Within Just 7 Years, Trend Shows
By one unique metric, we could approach technological singularity by the end of this decade, if not sooner. A translation company developed a metric, Time to Edit (TTE), to calculate the time it takes for professional [...]
HYPER (Highly Interactive Particle Relics) – A New Model for Dark Matter
Phase transition in early universe changes strength of interaction between dark and normal matter. Dark matter remains one of the greatest mysteries of modern physics. It is clear that it must exist, because without [...]
New Nanoparticles Deliver Therapy Brain-Wide and Edit Alzheimer’s Gene
Summary: Researchers have developed a new family of nano-scale capsules capable of carrying CRISPR gene editing tools to different organs of the body before harmlessly dissolving. The capsules were able to enter the brains of [...]
Cancer’s Secret Weapon? Enzyme That Protects Against Viruses May Fuel Tumor Evolution
An enzyme that defends human cells against viruses can help drive cancer evolution towards greater malignancy by causing myriad mutations in cancer cells, according to a study led by investigators at Weill Cornell Medicine. The [...]
Scientists Uncover Japanese Fruit Juice That May Help Prevent Lung Cancer
Using a mouse model, Japanese researchers unleash the likely mechanism of action of Actinidia arguta (sarunashi) juice on lung cancer development. Lung cancer is a leading cause of death in Japan and across the [...]
In-place manufacturing method improves gas sensor capabilities, production time
When used as wearable medical devices, stretchy, flexible gas sensors can identify health conditions or issues by detecting oxygen or carbon dioxide levels in the breath or sweat. They also are useful for monitoring [...]
In the core of the cell: New insights into the utilization of nanotechnology-based drugs
Novel drugs, such as vaccines against covid-19, among others, are based on drug transport using nanoparticles. Whether this drug transport is negatively influenced by an accumulation of blood proteins on the nanoparticle’s surface was [...]
The costly lesson from COVID: why elimination should be the default global strategy for future pandemics
Imagine it is 2030. Doctors in a regional hospital in country X note an expanding cluster of individuals with severe respiratory disease. Rapid whole-genome sequencing identifies the disease-causing agent as a novel coronavirus. Epidemiological [...]
How Artificial Intelligence Found the Words To Kill Cancer Cells
A predictive model has been developed that enables researchers to encode instructions for cells to execute. Scientists at the University of California, San Francisco (UCSF) and IBM Research have created a virtual library of thousands of “command sentences” [...]
Next-generation, light-activated nanotech for antibiotic-resistant superbugs
It's "lights out" for antibiotic-resistant superbugs as next-generation light-activated nanotech proves it can eradicate some of the most notorious and potentially deadly bacteria in the world. Developed by the University of South Australia and [...]
Leave A Comment